. Computer Science o O
AD-A280 0“?3

Collected Papers of the Soar/IFOR Project
Spring 1994

W. Lewis Johnson, Randolph M. Jones, David Keirsey, Frank V. Koss,
‘ o John E. Laird, Jill F. Lehman, Paul E. Neilsen, Paul S. Rosenbloom,
- et eikl . 'Robert Rubinoff, Karl B. Schwamb, Milind Tambe, Michael van Lent, Robert Wray

April 25, 1994
CMU-CS-94-134

- DTIC

ELECTY |
\ s JUN 0 81004

paps -

1
¢
| o
b a

-17267 -
\ﬂlﬂﬂ\l\lﬂ\\ﬁl\\\ll\l\\l\l|\\\\\|I\N\ o4 6 7 092

T A ¥
] 5

Ty -
g7

e JUHOBU%@

Collected Papers of the Soar/IFOR Project

.
Ly

Spring 1994
W. Lewis Johnson, Randolph M. Jones, David Keirsey, Frank V. Koss,
John E. Laird, Jill F. Lehman, Paul E. Neilsen, Paul S. Rosenbloom, Accecion For
Robert Rubinoff, Karl B. Schwamb, Milind Tambe, Michael van Lent, Robest Wray _DTTE Tl
| . DIIC TAB
April 25, 1994 Unannounc !
CMU-C§-94-134 Justificat.on
By e
School of Computer Science Dist:ib. v
Camegie Mellon University
Pittsburgh, PA 15213 R
Dist : Wu:;vc:ao
Abstract l L

Since the summer of 1992, the Soar/IFOR research group has been building intelligent automated agents
for tactical air simulation. The ultimate goal of this project is to develop automated pilots whose behavior
in simulated engagements is indistinguishable from that of human pilots. This technical report is a
collection of the research papers that have been generated from this project as of Spring 1994. The
research covered in these papers spans a wide spectrum of issues in agent development such as
explanation, managing situational awareness, managing multiple interacting goals, coordination between
multiple agents, natural language processing, developing believable agents, event tracking, and the
infrastructure to support agent development, including knowledge acquisition and use, interfacing to
simulation environments, and developing low cost simulators.

This technical report is being published concurrently at the University of Michigan (CSE-TR-207-94), the
(CMU-CS ‘9’5.134) California Information Sciences Institute (ISY/SR-94-379), and Camegie Mellon University

This research was supported at the University of Michigan, the University of Southem California, and Camnegie
Mellon University by contract N00014-92-K-2015 from the Advanced Systems Technology Office of the Advanced
Research Projects Agency and the Naval Research Laboratory. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of ARPA, NRL, or the U.S. Government,

— - — .
Te.. 5. moof ol 2@ approved
for puditc xle iw z..d :ale; its

distribution 12 caamited

Keywords: Artificial intelligence, cognitive simulation, plan execution formation and generation, natural
language processing, simulation and modeling applications, simulation support systems

Table of Contents

Preface

1. Intelligent Automated Agents for Flight Training Simulators
Randolph, M. Jones, Milind Tambe, John E. Laird, and Paul S. Rosenbloom

2. Intelligent Automated Agents for Tactical Air Simulation: A Progress Report.
Paul S. Rosenbloom, W. Lewis Johnson, Randolph, M. Jones, Frank V. Koss, John E. Laird,
Jill F. Lehman, Robert Rubinoff, Karl B. Schwamb, and Milind Tambe

3. Agents that Explain Their Own Actions
W. Lewis Johnson

4. Agents that Learn to Explain Themselves
W. Lewis Johnson

5. Multiple Information Sources and Multiple Participants:
Managing Situational Awareness in an Autonomous Agent.
Randolph, M. Jones, and John E. Laird

6. Generating Behavior in Response to Interacting Goals .
Randolph, M. Jones, John E. Laird, Milind Tambe, and Paul S. Rosenbloom

7. Knowledge Acquisition and Knowledge Use in a Distributed IFOR Project
Frank V. Koss and Jill F. Lehman

8. Coordinated Behavior of Computer Generated Forces in TacAir-Soar
John E. Laird, Randolph, M. Jones, and Paul E. Nielsen

9. Natural Language Processing in an IFOR Pilot
Robert Rubinoff and Jill F. Lehman

10. Working with ModSAF: Interfaces for Programs and Users
Karl Schwamb B., Frank V. Koss, and David Keirsey

11. Building Believable Agents for Simulation Environments: Extended Abstract
Milind Tambe, Randolph, M. Jones, John E. Laird, Paul S. Rosenbloom, and Karl Schwamb

12. Event Tracking in Complex Multi-agent Environments
Milind Tambe and Paul S. Rosenbloom

13. A Very Low Cost System for Direct Human Control of Simulated Vehicles
Michael van Lent and Robert Wray

11

21

37

52

57

73

78

82

94

Preface

Since the summer of 1992, the Soar/IFOR research group has been building intelligent automated agents
for tactical air simulation. The Soar/IFOR research project exists at three sites, the University of
Michigan, the University of Southern California, and Carnegie Mellon University. The ultimate goal of
this project is to develop automated pilots whose behavior in simulated engagements is indistinguishable
from that of human pilots. Our work has concentrated on developing agents for beyond visual range
engagements where there are either one or two fighter planes on each side.

This technical report is a collection of the research papers that have been generated from this project as
of Spring 1994. Most of the papers were presented at the Fourth Conference on Computer Generated
Forces and Behavioral Representation in Orlando in May 1994. The others include our paper from the
Third Conference on CGF & BR and two papers presented at other workshops and conferences.

The research covered in these papers spans a wide spectrum of issues in agent development such as
explanation [3,4], managing situational awareness [5], managing multiple interacting goals [6],
coordination between multiple agents [8], natural language processing [9], developing believable agents
[11], and event tracking [12] . We have also done research on the infrastructure to support the
development of these agents which includes work on knowledge acquisition and use [7], interfacing
agents to simulation environments [10], and developing low cost simulators {13]). The papers are
organized by having the two overview papers first (the one presented last year followed by the one to be
presented this year) [1] & [2], followed by all of the other papers in alphabetic order by author.

1. Jones, R. M., Tambe, M., Laird, J. E., Rosenbloom, P. S. 1993
Intelligent Automated Agents for Flight Training Simulators.
Proceedings of the Third Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL. pp. 33-42.

2. Rosenbloom, P. S., Johnson, W. L., Jones, R. M,, Koss, F., Laird, J. E.,
Lehman, J. F., Rubinoff, R., Schwamb, K. B., Tambe, M. 1994
Intelligent Automated Agents for Tactical Air Simulation: A Progress Report.
Proceedings of the Fourth Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL.

3. Johnson, W. L. 1994
Agents that Explain Their Own Actions.
Proceedings of the Fourth Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL.

4. Johnson, W. L. 1994
Agents that Learn to Explain Themselves.
Proceedings of the Twelfth National Conference on Artificial Intelligence, Seattle, WA.

5. Jones, R. M., Laird, J. E. 1994
Multiple Information Sources and Multiple Participants: Managing
Situational Awareness in an Autonomous Agent.
Proceedings of the Fourth Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL.

ii

6. Jones, R. M., Laird, J. E., Tambe, M., Rosenbloom, P. S. 1994
Generating Behavior in Response to Interacting Goals.
Proceedings of the Fourth Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL.

7. Koss, F. V., Lehman, J. F. 1994
Knowledge Acquisition and Knowledge Use in a Distributed IFOR Project.
Proceedings of the Fourth Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL.

8. Laird, J. E., Jones, R. M,, Nielsen, P. E. 1994
Coordinated Behavior of Computer Generated Forces in TacAir-Soar.
Proceedings of the Fourth Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL.

9. Rubinoff, R., Lehman, J. F. 1994
Natural Language Processing in an IFOR Pilot.
Proceedings of the Fourth Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL.

10. Schwamb, K. B., Koss, F. V., Keirsey, D. 1994
Working with ModSAF: Interfaces for Programs and Users.
Proceedings of the Fourth Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL.

11. Tambe, M., Jones, R. M., Laird, J. E., Rosenbloom, P. S., Schwamb, K. 1994
Building Believable Agents for Simulation Environments: Extended Abstract.
Proceedings of the AAAI Spring Symposium on Believable Agents, 1994.

12. Tambe, M., Rosenbloom, P. S. 1994
Event Tracking in Complex Multi-agent Environments.
Proceedings of the Fourth Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL.

13. van Lent, M., Wray, R. 1994
A Very Low Cost System for Direct Human Control of Simulated Vehicles.
Proceedings of the Fourth Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL.

This technical report is being published concurrently at the University of Michigan (CSE-TR-207-94),
the University of Southern California Information Sciences Institute (ISI/SR-94-379), and Carnegie
Mellon University (CMU-CS-94-134).

This research was supported at the University of Michigan, the University of Southern California, and

Carnegie Mellon University by contract N00014-92-K-2015 from the Advanced Systems Technology
Office of the Advanced Research Projects Agency and the Naval Research Laboratory.

iii

Intelligent Automated Agents for Flight Training Simulators

Randolph M. Jones,! Milind Tambe,? John E. Laird,! and Paul S. Rosenbloom?

1 Artificial Intelligence Laboratory
University of Michigan
1101 Beal Avenue
Ann Arbor, MI 48109-2110

2School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

3Department of Computer Science and
Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina Del Rey, CA 90292

Abstract

Training in flight sitaulators will be more
effective if the agents involved in the simu-
lation behave realistically. Accomplishing
this requires that the automated agents be
under autonomous, intelligent control. We
are using the Soar cognitive architecture to
implement intelligent agents that behave
as much like humans as possible. In or-
der to approximate human behavior, the
agents must integrate planning and reac-
tion in real time, adapt to new and un-
expected situations, learn with experience,
. and exhibit the cognitive limitations and
strengths of humans. This paper describes
two simple tactical flight scenarios and the
knowledge required for an agent to com-
plete them. In addition, the paper de-
scribes an implemented agent model that
performs in limited tactical scenarios cn
three different flight simulators.

The goal of this research is to construct
intelligent, automated agents for flight sim-
ulators that are used to train navy pilots
in flight tactics. When pilots train in tacti-
cal simulations, they learn to react to (and
reason about) the behaviors of the other

agents (friendly and enemy forces) in the
training scenario. Thus, it is important
that these agents behave as realistically as
possible. Standard automated and semi-
automated agents can provide this to a lim-
ited extent, but trainees can quickly rec-
ognize automated agents and take advan-
tages of known weaknesses in their behav-
ior. To provide a more realistic training sit-
uation, automated agents should be indis-
tinguishable from other human pilots tak-
ing part in the simulation.

To construct such intelligent, automated
agents, we have applied techniques from
the fields of artificial intelligence and cog-
nitive science. The agents are implemented
within the Soar system, a state-of-the-art,
integrated cognitive architecture (Rosen-
bloom et al., 1991). These agents incor-
porate knowledge gleaned from interviews
with experts in flight tactics and analysis
of the tactical domain. Soar is a promising
candidate for developing agents that be-
have like humans. Flexible and adaptive
behavior is one of Soar’s primary strengths,
and Soar’s learning mechanism provides it
with the capability of improving its perfor-
mance with experience. In addition, Soar
allows the smooth integration of planning
and reaction in decision making (Pearson

et al, 1993). Finally, Soar is the foundation
for the development of a proposed unified
theory of human cognition (Newell, 1990),
and thus maps quite well onto a number of
the cognitive issues of interest. This paper
reports the results of our research in con-
structing an intelligent agent for an initial,
simple training scenario and our efforts at
supplementing the agent’s knowledge in or-
der to carry out more complex missions.

Complexities of tactical decision-
making

In order to complete a tactical mission,
pilots incorporate multiple types of knowl-
edge. These include, for example, know}-
edge about the goals of the mission, air-
plane and weapon constraints, survival tac-
tics, controlling the vehicle, characteristics
of the environment, and the physical and
cognitive capabilities of all of the agents
taking part in the scenario. In addition,
pilots use their knowledge flexibly and ex-
hibit adaptive behavior. This includes a
variety of capabilities, such as reasoning
about (and surviving in) unexpected sit-
uations, adapting to new situations, learn-
ing from experience, and addressing multi-
ple goals simultaneously (e.g., protecting a
position, intercepting the enemy, and sur-
viving). Finally, pilots integrate decision-
making during a mission with split-second
reactions to new situations and potential
threats.

Robust automated forces that can carry
out general simulated missions must ad-
dress these issues, especially if the forces
are to behave as humans would in simi-
lar circumstances. In addition to provid-
ing the wide range of capabilities that hu-
man pilots exhibit, intelligent agents must

reflect the same types of weaknesses as hu-
mans. These include mental limitations,
such as attention and cognitive load, and
physical limitations, such as reduced cog-
nitive processing under high forces (such
as during a hard turn).

To capture the complex interactions be-
tween agents in a simulation, we feel it nec-
essary for each agent to be as autonomous
and intelligent as possible. Simulation via
stochastic methods can capture general be-
haviors of groups of agents, but a more re-
alistic simulation requires each agent to be-
have individually, with is own set of goals,
constraints, and perceptions. In addition,
if the agents are to be used for training pi-
lots, they must be intelligent in order to
provide as rich a training environment as
would flying against real humans.

Requirements for an intelligent au-
tomated agent

The primary research question is how in-
telligent, automated agents should be im-
plemented. A simple solution would be
to attempt to create “simulation-pilot ex-
pert systems”. This would involve con-
verting knowledge about high-level tacti-
cal decision-making into a fixed rule base.
The system would suggest the most appro-
priate action (or set of actions) based on
the current status of the environment. In
fact, a number of expert systems have been
implemented for various aspects of tactical
decision-making (e.g., Kornell, 1987; Rit-
ter & Feurzeig, 1987; Zytkow & Erickson,
1987;).

However, while expert systems have some
of the strengths required for realistic sim-

ulation, they are nsually weak in other ar-
eas. In a standard rule-based approach, it

is difficult to capture the complexity of the
multiple, dynamic goals that pilots must
reason about. In contrast, systems that
can reason well in such a complex domain
generally have difficulties making decisions
in real time, and they often do not have
the ability to react to changes in the en-
vironment when there is not enough time
to plan ahead. In addition, systems with
only high-level tactical knowledge prove to
be rather rigid. Unless the system can
be preprogrammed for every possible con-
tingency, its performance degrades greatly
when it finds itself in unexpected situa-
tions. Finally, expert systems generally ig-
nore the possibility of learning with expe-
rience and other cognitive aspects of the
task. Intelligent, autonomous agents must
combine all of these strengths, having the
ability to reason about multiple goals in
a complex environment, react quickly and
appropriately when the time for complex
reasoning is limited, adapt to new situa-
tions gracefully, and improve its behavior
with experience.

In order to create an agent that can rea-
son and react in real time, and is flexible
enough to adapt to new situations, it is not
enough simply to encode high-level tactics
as rules in the system. Rather, the sys-
tem must also understand why each high-
level tactical decision is made, so it must
contain knowledge of the first principles
that support those decisions. For example,
part of one tactic for intercepting a bogey
involves achieving a desired lateral sepa-
ration from the bogey’s flight path. One
way to generate this behavior is to include
a specific rule for the agent to move to
the desired lateral separation when it is on
the appropriate leg of the intercept. How-
ever, a more intelligent agent encodes the
knowledge that explains why this partic-

ular tactic works (so that the fighter will
have enough space to come around for a
rear-quarter shot if the long and medium-
range missiles miss).

With the appropriate supporting knowl-
edge, the system can function in situations
that the programmer may not have an-
ticipated. Maintaining lateral separation
from the bogey’s flight path is a general
principle that allows the fighter room to
negotiate a turn for a short-range missile
shot. This principle may have an impact in
a large number of tactical situations, and
therefore shouldn’t be considered as merely
an instruction to follow for one particu-
lar type of intercept. If the system rea-
sons from first principles, the programmer
does not have to hard code every possible
contingency, and good variations on tactics
should emerge in response to unanticipated
changes in the simulation environment.

Implementing the agent in this manner
also provides advantages in terms of adding
new knowledge to the system. If the tacti-
cal decisions emerge from low-level knowl-
edge, high-level decisions will change ap-
propriately as the supporting knowledge is
changed or supplemented. New low-level
knowledge (such as a better understand-
ing of geometric principles or radar limita-
tions) will interact with existing knowledge
to generate subtle (or possibly dramatic)
changes in behavior. Thus, the agent can
reason in a number of new situations with-
out requiring a new specific rule for each
case. The ease of adding new knowledge
to the system also makes it possible to in-
corporate existing machine-learning mech-
anisms. These can allow the system to
adapt and improve its behavior with ex-
perience, as well as provide insights into
how human pilots learn about tactics.

The Soar architecture for problem solving
(Newell, 1990) is well suited for this type
of task. It divides knowledge into prob-
lem spaces and allows goals and actions
in one problem space to be implemented
via reasoning in another. Thus, when the
agent has a high level goal to intercept a
bogey, for example, it can switch problem
spaces and reason about the characteristics
of its weapons, radar, airplane, and mili-
tary doctrine. The knowledge from each
of these spaces combines to generate an
appropriate tactical action. In turn, the
high-level action can then be implemented
in a problem space that contains medium-
level knowledge about plane maneuvers or
low-level knowledge about moving the stick
and flipping switches.

Because knowledge is separated into prob-
lem spaces, it can be easily updated. For
example, if the agent’s plane is equipped
with a new radar with a longer range, only
the knowledge in the “radar” space need
be updated. New decisions made in the
radar space will interact with the results
of reasoning in other problem spaces, even-
tually impacting high-level decisions such
as which specific actions should be taken
to intercept a bogey. Likewise, if the au-
tomated agent is moved to a new simula-
tion environment with a new interface, we
can appropriately update the knowledge in
the “control” problem space, leaving the
remaining knowledge intact.

Simple tactical situations

Our initial effort to construct an intelli-
gent agent focuses on two tactical scenar-
ios used in training pilots: the “non-jinking
bogey” and “l-v-1 aggressive bogey” sce-
narios. In the non-jinking bogey scenario,
the target is an airplane (such as a cargo

or fuel plane) that holds a steady course
and altitude, and does not carry any of-
fensive threats. The key to this scenario is
that the bogey does not attempt to evade
(jink) the fighter’s attack in any way. Al-
though this situation is not likely to occur
often in real combat situations, it is a valu-
able training situation for pilots. It teaches
them how to line up the delivery of various
types of missiles when the bogey’s behavior
is very predictable. When a non-offensive
bogey’s behavior becomes less predictable,
the tactics required to intercept it actually
become simpler (but less effective).

There are three main phases involved in
attacking a non-jinking bogey (see Figure
1). These involve delivering long, medium,
and short-range missiles. During each of
the phases, the fighter must assume that
the current missile will miss, and simul-
taneously maneuver into the most advan-
tageous position for the next phase. For
example, while moving closer to the bogey
to fire a long-range missile, the fighter also
attempts to achieve the best lateral sep-
aration and target aspect for a shot with
the medium-range missile (see Figure 2).
After delivering a medium-range missile,
the fighter must perform displacement and
counter turns in order to end up behind
the bogey. This allows the fighter to fire
a rear-quarter short-range missile. Due to
these constraints, the fighter cannot simply
head on a collision course with the bogey,
but must get to the bogey as quickly as
possible while eusuring that it can eventu-
ally achieve a rear-quarter missile shot.

The tactics for executing this scenario are
relatively simple. The fighter must achieve
the appropriate lateral separation and tar-
get aspect while firing its weapons at the
right times. Then it must execute the dis-

FIGHTER
1. LONG-RANGE MISSILE

2. MEDIUM-RANGE MISSILE

3.COUNTERTURN &
SHORT-RANGE MISSILE

-

Figure 1. Three stages for intercepting a non—jinking bogey.

Figure 2. Definition of lateral separation and target aspect.

BOGEY

placement and counter turns and deliver
the short-range missile. As mentioned pre-
viously, we could code these tactics directly
into rules for the agent, but they would
then only work under very specific circum-
stances where everything goes right. Thus,
we have implemented the knowledge that
supports these tactics. This knowledge jus-
tifies why each tactical decision should be
made when it is made. This allows the sys-
tem, for example, to get back on course for

a short-range missile shot if it misses its’

opportunity for the medium-range missile
shot for some reason. In addition, any par-
ticular action that the agent generates will
be based on the supporting knowledge, and
the agent has the potential to explain its
decision (a facility we plan to add in the
future).

The 1-v-1 aggressive bogey scenario in-
volves two airplanes with similar capabil-
ities. One is protecting a high-value unit
and the other is attempting to destroy it.
When the two fighters come in contact they
both attempt to intercept and destroy each
other, with the overall goal of surviving.
This scenario highlights an interaction be-
tween different low-level constraints that
results in tactical decisions. For example,
if one fighter is equipped with a slightly
better radar, missiles with longer range,
or a more mobile airplane, it dramatically
affects the actions that should be taken
in completing the mission and surviving,.
Our agent so far only partially implements
this 1-v-1 scenario, and it involves a num-
ber of issues that make it more complex
than the non-jinking bogey scenario. Af-
ter discussing the current state of the agent
model, we will describe these issues in de-
tail.

Details of the intelligent agent

In order to construct an agent that suc-
cessfully intercepts a non-jinking bogey, we
analyzed tactics for the scenario and inter-
viewed former pilots and radar intercept
officers. This allowed us to determine the
underlying knowledge and first principles
that support the tactics. Then, we en-
coded this knowledge into an executable
Soar system.

The Soar agent’s knowledge is organized
into problem spaces, each containing oper-
ators that allow the agent to reason about
particular types of goals. When the agent
cannot immediately carry out an action at
one level, it uses Soar’s universal subgoal-
ing mechanism to move into an alternate
problem space and consider methods for
carrying out that action. Therefore, high-
level tactical decisions are eventually im-
plemented as medium-level maneuver ac-
tions or low-level control actions, and the
agent always has multiple goals in memory
that it uses to reason about and react to
its ever-changing situation.

Depending on the particular simulation
platform, the current Soar agent requires
between 13 and 17 problem spaces to rea-
son with; i.e., 13-17 different types of goals
that it reasons about. Most of these are
shown in Figure 3. The mission, protect-
hvu, barcap, and intercept problem spaces

" encode tactical knowledge for carrying out

missions and performing intercepts. The
problem spaces for weapons and missiles
include knowledge about specific weapons
and the actions that must be performed
to deliver them to a target. The maneu-
ver and absolutes problem spaces deter-
mine the actual plane maneuvers that must
be carried out to implement higher-level
actions. The remaining problem spaces ir-

Other problem-spaces for low-level controls

Figure 3. Soar’s problem spaces for intercepting a non—jinking bogey.

plement airplane maneuvers at various lev-
els of specification, down to the level of
stick and button commands that are issued
to the flight simulator.

At any particular instant, between 5 and
12 problem spaces (or hierarchical goals)
are usually active. Thus, when changes oc-
cur in the agent’s situation, there are mul-
tiple levels at which the agent may react
(Pearson et al., 1993). For example, at a
low level, a sudden down draft can cause
a change in climb-rate or altitude, lead-
ing the agent directly to pull back on the
stick. At a higher level, a maneuver by a
bogey on the radar can cause a change in
tactics. Any reasoning involved in imple-
menting the new tactical decision also per-
colates down to a new maneuver or stick
action. In this manner, Soar maintains its
variety of goals in parallel, and violations
of the goals at any level lead to immediate
action at the appropriate level.

We have implemented an initial model for
the non-jinking bogey scenario in whole or
in part on three separate flight simulators.
The simplest simulator moves planes in a
two-dimensional grid-world. In addition,
the planes do not move with realistic flight
dynamics. We used this simulator to pro-
totype the system and debug the high-level
tactics embedded in the system. The sec-
ond flight simulator was adapted from the
flight simulator provided with SGI graph-
ics workstations. It works in real time and
requires the agent to issue very low level
commands at the level of moving the stick
(by issuing mouse pixel movements) and
other low-level commands (by simulating
keyboard presses). The non-jinking bogey
scenario has not yet been completely im-
plemented on this simulator, because Soar
must handle the low level intricacies of sim-

ply flying the airplane as well as worrying
about tactical decisions and maneuvering.
Finally, we have implemented the scenario
on BBN’s ModSAF simulator, which has
the most realistic flight dynamics of the
three simulators. This simulator works in
real time (with a scheduler dividing time
between the simulation and agents) and it
takes commands at the level of maneuver
actions (such as desired heading and alti-
tude) without making the agent concern
itself with how the maneuvers are actually
implemented with airplane controls.

As of now, we have not completely de-
veloped the knowledge base that would al-
low our agent to successfully fly the 1-v-
1 aggressive bogey scenario. This scenario
differs from the non-jinking bogey scenario
along two major dimensions. First, the bo-
gey maneuvers, so its behavior is not en-
tirely predictable. Second, the bogey is ag-
gressive and has offensive capabilities, so
any action that is taken must also address
the overall goal of surviving: the agent can-
not simply close in on the bogey and shoot
it.

In order to successfully complete a mis-
sion against an aggressive bogey, the agent
must include not only extra knowledge in
its tactical problem spaces, but it must also
have two new capabilities to address the
above issues. First, the agent must be able
to interpret and assess its current situation
at all (or at least most) times. This primar-
ily involves interpreting the bogey’s cur-
rent actions and predicting its future ac-
tions. As with most of the agent’s reason-
ing, the interpretation process also takes
place at multiple levels. At a low level,
the fighter must recognize when the bogey
h:i. initiated a turn and when it has com-
pleted one. At a higher level, the fighter

must determine whether the turn indicates
some kind of threat, and what that threat
may be. For example, if the bogey initially
comes to a collision course with the fighter,
this probably indicates that the bogey is
aggressive and is going to try to shoot the
fighter. If the bogey points towards the
fighter and then makes a hard turn, this
indicates that the bogey has probably just
fired a missile. The agent must interpret
the limited information it gets from its sen-
sors. Then it must use this interpretation
to predict the goals that the bogey is try-
ing to achieve and the actions at different
levels that the bogey is carrying out.

The second necessary capability for the
agent is to use multiple high-level goals to
constrain the actions that the agent gener-
ates. These types of goals are a bit differ-
ent from the parallel goals that the Soar
agent already handles, because they are
not hierarchical in nature. Rather, they
are distinct goals that interact with each
other. For example one goal, destroy bo-
gey, implies that the fighter should close in
on the bogey as quickly as possible. How-
ever, another goal, survive, pressures the
fighter to avoid the bogey in order to stay
out of the bogey’s weapon range. These
conflicting goals both must be used to se-
lect from multiple possible actions. This
type of reasoning leads directly to com-
posite tactical actions. For example, the
fighter may get close enough to fire a mis-
sile and then make a sudden hard turn.
The turn must be hard enougk to keep the
bogey and fighter from getting close too
quickly, but not so hard that the fighter
loses its radar lock on the bogey (which
would put the fighter at a large disadvan-
tage). In this manner, the agent deter-
mines the best action that supports two
simultaneous, conflicting goals.

The issues of interpretation and simulta-
neous goals are not trivial, and they play
central roles in agent reasoning for any tac-
tical situations except the simplest ones.
Much of tactical decision making involves
creating a model of the world from lim-
ited information and addressing multiple
goals and constraints, such as the current
mission, survival, and the characteristics
and status of the weapons and airplane.
We have not completed the incorporation
of this knowledge into the agent yet, but
we are taking advantage of the strengths
of the Soar architecture in order to im-
plement these two important capabilities
(Covrigaru, 1992).

Discussion

We have implemented an intelligent, au-
tonomous agent that completes missions in
a simple tactical scenario. The agent is
designed with flexibility in mind. It rea-
sons from first principles about high-level
tactical decisions, and is thus able to rea-
son in unexpected situations and recover
gracefully from mistakes. In addition, the
agent’s knowledge base is flexible enough
to be easily transferred between simulation
platforms and to encode new tactics in a
modular fashion. We are currently imple-
menting the knowledge necessary for the
agent to complete the 1-v-1 aggressive bo-
gey scenario. This includes addressing the
two important issues of situation interpre-
tation and achieving multiple simultaneous
and interacting goals.

Our future research will involve incremen-
tally expanding the agent’s knowledge base
so it can reason robustly in a wide range
of 1-v-1 scenarios. We will also soon fo-
cus on modeling more complex scenarios,
including those involving more than two

planes. This will also allow us to expand
the agent’s coverage of the cognitive be-
haviors involved in tactical flight. For ex-
ample, we will incorporate more intelligent
methods for situation assessment, model-
ing other agents (i.e., robustly predicting
actions and goals of other participants in
the scenario, both friends and foes), iden-
tifying potential threats, and reacting to
them. Beyond that, we will focus on more
complex cognitive tasks, such as more com-
plete integration of planning, reaction, and
execution, more sophisticated interpreta-
tion of the environment and other agents,
and learning from instruction.

References

Covrigaru, A. (1992). Emergence of meta-
level control in multi-tasking autonomous
agents (Technical Report No. CSE-TR-
138-92). Doctoral dissertation, Dept. of
Electrical Engineering and Computer Sci-
ence, University of Michigan.

Kornell, J. (1987). Reflections on using
knowledge based systems for military sim-
ulation. Simulation, {8, 144-148.

Newell, A. (1990). Unified theories of cog-
nition. Cambridge, MA: Harvard Univer-
sity Press.

Pearson, D. J., Huffman, S. B., Willis, M.
B., Laird, J. E., & Jones, R. M. (1993).
Intelligent multi-level control in a highly
reactive domain. In Proceedings of the In-
ternational Conference on Intelligent Au-
tonomous Systems.

Ritter, F., & Feurzeig, W. (1987). Teach-
ing real time tactical thinking. In J. Psotka,
L. D. Massey, & S. A. Mutter (Eds.), In-

telligent tutoring systems: Lessons learned.
Hillsdale, NJ: Lawrence Erlbaum.

10

Rosenbloom, P. S., Laird, J. E., Newell, A.,
& McCarl, R. (1991). A preliminary anal-
ysis of the Soar architecture as a basis for
general intelligence. Artificial Intelligence,
47, 289-325.

Zytkow, J. M., & Erickson, M. D. (1987).

Tactical manager in a simulated environ-

ment. In Z. W. Ras & M. Zemankova (Eds.),
Methodologies for intelligent systems. Am-
sterdam: Elsevier Science.

Intelligent Automated Agents for Tactical Air Simulation:
A Progress Report

Paul S. Rosenbloom,! W. Lewis Johnson,! Randolph M. Jones,? Frank Koss,2 John E. Laird,2
Jill Fain Lehman,3 Robert Rubinoff,3 Karl B. Schwamb,! and Milind Tambe!

Information Sciences Institute 2 Antificial Intelligence Laboratory
University of Southemn California The University of Michigan
4676 Admiralty Way 1101 Beal Ave.
Marina del Rey, CA 90292 Ann Arbor, MI 48109
{rosenblo, johnson, schwamb, tambe} @isi.edu {rjones, koss, laird } @eecs.umich.edu

3Computer Science Department
Camnegie Mellon University
Pittsburgh, PA 15213
{jef, rubinoff} @cs.cmu.edu

Abstract ' time, flexibly use a small amount of tactical
knowledge about two classes of one-versus-
one (1-v-1) Beyond Visual Range (BVR)
tactical air scenarios. In the non-jinking
bogey scenarios, one plane (the non-jinking
bogey) is unarmed and maintains a straight-
and-level flight path. The other plane is
armed with long-range radar-guided,
medium-range radar-guided, and short-range
infrared-guided missiles. Its task is to set up
for a sequence of missile shots, at
increasingly shorter ranges, until the non-

This article reports on recent progress
in the development of TacAir-Soar, an
intelligent automated agent for tactical air
simulation. This includes progress in
expanding the agent’s coverage of the
tactical air domain, progress in enhancing
the quality of the agent’s behavior, and
progress in building an infrastructure for
research and development in this area.

Introduction jinking bogey is destroyed. Though such
At the Third Conference on Computer scenarios are not common in the real world,
Generated Forces and Behavioral they are used as training exercises because
Representation we presented an initial report they teach pilots how to position their planes
on an effort to build intelligent automated for later shots while simultaneously taking
agents for tactical air simulation (Jones et al, carlier ones. In the aggressive bogey
1993). The ultimate intent behind this effort scenarios, one plane is attempting to protect
is to develop automated pilots whose a ngh-Valpc Unit (HVU), such as an
behavior in simulated battlefields is nearly aircraft carrier, via a Barrier Combat Air
indistinguishable from that of human pilots Patrol (BARCAP); that is, the plane patrols
(and to go beyond this to develop generic between.the HVU and the anticipated threat
agents that are readily specializable for this (by cycling around a racetrack pattern), and
and other domains). If such agents can be then intercepts any threat that it detects in its
created, they should provide close to ideal sector. The other plane is attempting to
force supplements for many of the attack the HVU, but to do so it must first
applications anticipated for distributed intercept the defensive aircraft.
interactive battlefield simulation. _ l'Ihe egrOtOtype agents were al}
£ the initial " s implemented as parameterized variations o
had 1;:; c:ﬂl;lmctergp?hr;p (r:glﬁg:peinag;:l- a single multi-functional tactical-air agent,
11

called TacAir-Soar (or TAS for short). TAS
is built within Soar, a software architecture
that is being developed as a basis for both an
integrated intelligent system and a unified
theory of human cognition (Rosenbloom,
Laird, & Newell, 1993; Newell, 1990). Soar
provides TAS with basic support for
knowledge representation, problem solving,
reactivity, external interaction, and learning.
Soar also provides a potential means of
integrating into TAS additional planning,
learning, and natural language capabilities
that are being developed independently
within Soar.

The prototype TAS agents actually
utilized only a subset of the capabilities
provided either directly by Soar, or built
separately within it. However, this subset —
along with the domain-specific (and
domain-independent) rules that were added
to Soar’s long-term memory - was
sufficient to yield a combination of
knowledge-based decision making,
task(/goal) switching and decomposition,
and real-time interaction with the DIS
environment. Knowledge-based decision-
making arises from Soar’s ability to make
decisions based on integrating preferences
generated by arbitrary sets of rules. Task
switching also arises from Soar’s decision-
making abilities, but here as specifically
applied to the selection and switching of
tasks. Tasks(/goals) are represented as
operators in Soar, and are one of the main
foci of its decision making. Task
decomposition arises from using the same
decision mechanism to drive task
performance, plus Soar’s ability to
automatically generate a new performance
context when a decision is problematic.
When these mechanisms are combined with
rules that generate preferences about which
subtasks are appropriate for which
problematic parent tasks (in the particular
situation of interest), task decomposition
occurs. Real-time interaction with the DIS
environment arises from the combination of
Soar’s incorporation of perception and
action within the inner loop of its decision
making capabilities — thus allowing all

_—

12

decisions to be informed by the current
situation (and interpretations of it, as
generated by rule firings) — and the use of
ModSAF (Calder et al, 1993) as the
interface to the DIS environment (Schwamb,
Koss, & Keirsey, 1994).

When combined with the very
preliminary domain knowledge that was
encoded at the time, this combination of
capabilities yielded competent behavior for
the non-jinking bogey scenarios, but only
fragments of behavior for the aggressive
bogey scenarios (due to insufficient
knowledge about this class of scenarios).
One type of aircraft, similar to an F14, was
flown in these scenarios.

The purpose of this article is to provide
areport, one year later, on the progress in
moving TAS from the initial prototype
agents towards the ultimate goal of human-
like automated pilots that are broadly
capable in tactical air scenarios. This report
is intended to be complemented by the more
detailed articles about particular aspects of
TAS that also appear in these proceedings
(Johnson, 1994a; Jones & Laird, 1994;
Jones et al, 1994; Koss & Lehman, 1994,
Laird & Jones, 1994; Rubinoff & Lehman,
1994; Schwamb, Koss, & Keirsey, 1994;
Tambe & Rosenbloom, 1994; van Lent &
Wray, 1994), rather than to substitute for
them. Thus, where there is a potential
overlap between this report and any of the
more detailed articles, this report will
become more terse and defer (and refer) to
the appropriate detailed article(s).

In the body of this report, progress on
domain capabilities will be covered first.
The focus here is on expanding the classes
of domain scenarios in which the agents can
behave appropriately. Second, progress on
intelligent capabilities will be covered. The
focus here is on expanding the classes of
basic intelligent abilities — such as coping

with multiple interacting tasks, plan
recognition, learning, planning, self-
explanation, and natural language -

exhibited by the agents. Third, progress on
infrastructure capabilities — such as
integration with the DIS simulation

environment, low-cost interfaces for human
pilots, knowledge acquisition, and
documentation — will be covered. Finally,
the article will be concluded with plans for
the future.

Domain Capabilities

Progress on domain capabilities has
occurred in two general areas: (1) improving
the robustness and range of the scenarios
within 1-v-1 BVR tactical air; and (2)
scaling up the scenarios in terms of the
number of vehicles, the range of vehicle
types, and the complexity of the required
organization and communication among the
vehicles.

Within 1-v-1, the TAS agents can now
exhibit competent behavior in the BVR
tactical-air segments of the aggressive bogey
scenarios. This includes the ability to patrol
in a racetrack pattern; select radar modes,
detect opponents on radar, perform search
and acquire activities when opponents drop
off of radar, and maneuver so as to confuse
the opponent’s search and acquire activities;
determine and attempt to achieve
appropriate intercept geometries and launch-
acceptability regions (LARs); select, fire,
and support missiles; and detect and evade
enemy missiles.

As played out in the DIS environment, a
typical aggressive bogey scenario involves
an F14 which is defending its aircraft carrier
against possible attack by a MiG29. The
F14 patrols in a racetrack until it spots the
MiG29 (the F14's radar and missiles both
have longer ranges than do the MiG29’s).
The F14 continues to monitor the MiG29
until its commit criteria are achieved, at
which point it begins the intercept by
attempting to achieve a good geometry from
which to fire a long-range missile (LRM).
At some later point the MiG29 detects the
F14 and also then begins an intercept. This
makes it difficult for the F14 to achieve any
further advantage in intercept geometry, so
it gives up on that, and turns to maximize
the rate of closure (and thus to minimize the
time before the intercept is complete).

When the Fl4 is finally close enough
(that is, it has the MiG29 within its LRM’s
launch-acceptability region), and is oriented
correctly, it launches a long-range missile,
and performs an fpole (a turn that decreases
the rate of closure between the aircraft — to
delay the arrival of any missiles that might
have been launched from the MiG29 -
while simultaneously keeping the MiG29 on
the F14’s radar). The MiG29 detects the
fpole, and beams in response, by turning
perpendicular to the F14 (to render blind the
Doppler radar that is guiding the Fl4’s
missile). The F14 then auempts to search
for and reacquire the MiG29, while
simultaneously changing altitude in order to
confuse the MiG29’s search and acquire
activities.

Both planes then generally attempt to
set up for further missile launches, and to
avoid missiles launched by their opponents.
Depending on the exact timing of the
engagement, and on the willingness of the
two planes to take risks (this is a TAS
parameter), zero, one, or both of the planes
may be shot down in the process.!

This scenario can be played out with
both planes flown by TAS agents, or with
one or the other flown by a human pilot in a
flight simulator. A formal demonstration of
the aggressive bogey scenario in the
WISSARD laboratory at Oceana Naval Air
Station during June 93 successfully pitted
two TAS agents in simulated Fl4s against
two human pilots (in F18 simulators, but
acting as MiG29s). This demonstration was
set up as two independent 1-v-1
engagements (out of radar range of each
other). Given the early state of development
of the agents at the time, the human pilots
were constrained in terms of the kinds of

Hn real engagements, if one or more of the aircraft
survive the BVR segment of the scenario, either a
within-visual range (WVR) engagement — that is, a
dogfight — or an air-to-ground attack on the HVU
may then occur. However, these aspects of the
scenario arc not part of BVR tactical air, and are thus
not pursued by the TAS agents.

tactics they were allowed to use. Under
these circumstances the demonstration
proceeded successfully, in real-time, and in
an otherwise unscripted manner. The
resulting behavior was much as described in
the typical example above. Feedback from
Navy personnel in attendance at the
demonstration was uniformly positive.

Despite this demonstrable success —
and the fact that in numerous subsequent
presentations to domain experts and other
Navy personnel TAS has consistently
impressed with its quality of behavior — it
must be noted that TAS is still not close to
covering the full complexity of the domain
abilities described above, or the interactions
among them. For example, only a subset of
the radar modes are used; search and acquire
in three dimensions is not strong; and only a
subset of the possible tactics for patrolling,
confusing, intercepting, and evading are
used. Fleshing out these abilities does not
look conceptually difficult at this point, just
time consuming.

Another dimension of complexity in 1-
v-1 BVR tactical air that is not fully
addressed at this point by TAS is the space
of possible missions that the agents need to
be able to perform. The aggressive bogey
scenarios cover two types of missions
(BARCAP-HVU and ATTACK-HVU);
however, there is still a handful of others.
One other mission to which TAS has
recently been extended is a MiGSWEEP. A
MiGSWEEP is a sweep by one side’s
fighters through the other side’s territory to
clear out a corridor for later aircraft (such as
bombers). In addition to the abilities
required for the previous missions, a
MiGSWEEP requires the ability to fly to
waypoints, and to break off an intercept and
“blow through" an opponent (that is, engage
in a small amount of WVR behavior in order
to accomplish a high-speed pass of an
opponent and continue with the planned
flight path).

In scaling up from these 1-v-1
scenarios, the biggest change has been the
incorporation of an ability to detect and
manage multiple aircraft. In 2-v-1

14

engagements a section (i.e., a coordinated
pair of planes) must be able to fly together
in formation and execute coordinated
tactics. In service of this they must be able
to communicate with each other, and to be
aware of each other’s positions. The TAS
agent is now capable of doing this (as
discussed in the next section) to support
competent 2-v-1 behavior, within the same
kinds of limits described for 1-v-1 (Jones &
Laird, 1994; Laird & Jones, 1994).

In 1-v-2 engagements a single aircraft
must be able to identify and sort out the
activities of a pair of adversaries who may
or may not be flying together as a section
(Jones & Laird, 1994). It must be able to
work out intercept geometries that take both
opponents into account - so as, for
example, not to be sandwiched between
them. It must also be able to determine
which of the pair is the primary threat, target
the primary threat, and determine when to
also fire at the secondary threat. For
example, if the pair are flying in a
coordinated fashion, then firing a missile at
one is likely to cause both to beam. It would
thus be a waste to launch missiles at both
under such circumstances. The current TAS
agents are also capable of performing
competently in such 1-v-2 engagements.

In 2-v-2 engagements, many of the
same issues come up as in 1-v-2 and 2-v-1.
However, additional capabilities are
required to sort the opponents (determining
which friendly aircraft has the responsibility
for which opponent aircraft), to decide when
one or both aircraft should launch missiles,
and to decide when to split the single 2-v-2
engagement into two independent 1-v-1
engagements (i.e.. to strip). Though work
on 2-v-2 has just recently begun, there is
now at least one working example of a
section of TAS agents successfully sorting
and firing at another section of TAS agents.
Once 2-v-2 is completed, larger
engagements (2-v-N, 4-v-4, N-v-N, etc.)
will still remain to be covered.

Other aspects of scale up that are
currently in progress include adding the
ability to fly an F18 (to the original F14 and

the recently added MiG29), and the addition
of an air intercept control (AIC) agent in an
E2 (a specialized radar plane that is similar
to an AWACS) (Rubinoff & Lehman, 1994).
The AIC’s job is different in a number of
ways from that of a fighter pilot, so
stretching TAS to accommodate this new
type of agent should force further
generalization of its capabilities.

Intelligent Capabilities

With respect to intelligent capabilities,
the most significant advance over the
prototype agents has been the addition to
TAS of the ability to maintain episodic
memories of its engagements, and to use
these memories in reconstructing what it
did, why it did what it did, and what else it
would have done if the situation had been
slightly different (Johnson, 1994a; Johnson,
1994b). These description and explanation
capabilities are available through an
interactive debriefing interface, in which
questions can be asked via selection from
dynamically created menus, and answers are
generated in (approximate) English. In
contrast to explanation in most expert
systems, where there is a distinct
“explanation" system that has direct access
to the "performance” system’s knowledge
and derivational traces, TAS generates the
explanations itself based only on (1) what it
can remember about what happened and (2)
what it can later reconstruct about what it
might have done (and why it might have
done it). This is a process that can be misled
by circumstances, but it is expected to be
more like how human pilots would actually
describe and explain their own behavior
during post-mission debriefing (though-the
psychological and behavioral accuracy of
this has not yet been studied).

In addition to these debriefing
capabilities, significant progress has also
been made on incorporating several other
capabilities into TAS. One capability is
coping with multiple interacting goals.
Though mapping a forest of interacting
goals onto the single goal stack maintained

. planning,

15

by Soar has turned out to be non-trivial —
and is currently a topic of intensive
investigation — workable strategies have
been found for TAS agents to coordinate
their behavior in the presence of all of these
goals and their interactions (Jones et al,
1994). A second capability is integrating
information from multiple sources about
multiple agents (Jones & Laird, 1994). The
sources of information about other agents
have been expanded from just radar, to also
include radio and vision;2 and the number of
agents about which information can be
represented has been expanded from one up
to an arbitrary number. A third capability is
communication and coordination among
multiple agents (Laird & Jones, 1994).
Instead of modeling a group of related
agents — such as a section of aircraft or a
platoon of tanks — as a single aggregate
unit, the behavior of groups is being
modelcd at the individual platform level.
This provides additional flexibility and
realism - in the simulation, but also
necessitates modeling how the groups
actually do communicate and coordinate
among themselves.

Additional capability investigations are
also underway in the areas of learning,
plan recognition and natural
language. Learning and planning are a
relatively common part of Soar’s repertoire
of behaviors in general (Laird &
Rosenbloom, 1990); however, they are not
yet a routine part of TAS’s behavior.
Investigations of their use in TAS have
begun — for example, the debriefing
capability depends on learning being active
within certain key portions of the TAS
agents — but it is too early to comment
generally on their outcome. In contrast, plan
recognition is now a routine part of TAS’s

2The radar, vision. and radio inputs attempt to
provide TAS with the information a human would
extract from those sources. However, this
information is provided symbolically, and no actual
visual or audio processing on the part of the agent is
required.

behavior, but only of a simple, low-level, ad
hoc variety. For example, when an
opponent turns, a new (hand-coded) task
may be selected to interpret whether the
opponent is performing an fpole (as part of a
missile launching plan) or a beam (as part of
a missile evasion plan). General plan
recognition tumns out to be particularly
difficult in the DIS environment because of
the presence of partial information about
multiple, flexible, interacting agents.
However, a more systematic approach based
on abstract model tracing (Anderson et al,
1990; Ward, 1991) in (multi-agent) world-
centered models is being investigated in a
version of TAS, and is showing some
promise (Tambe & Rosenbloom, 1994).
Finally, an investigation is in progress on

how to incorporate independently
developed, Soar-based, natural-language
abilities (Lehman, Lewis, & Newell,

1991) into TAS (Rubinoff & Lehman,
1994). In theory, two automated agents
could communicate without using natural
language; however, to do so can affect how
they are perceived by agents that are
eavesdropping on them. In the longer run,
natural language is also a critical capability
if automated agents are ever to interact in a
seamless way with human agents. Natural
language communication will initially be
provided between a pair of TAS agents — a
fighter and an AIC (in an E2) — with further
deployment hopefully to follow.

Infrastructure Capabilities

With respect to infrastructure, progress
has been made on four topics: (1) integration
of Soar with the DIS simulation
environment; (2) provision of a low-cost
interface for human pilots; (3) knowledge
acquisition methodology; and “4)
documentation tools and methodology.
These topics are covered in turn here.

TAS agents are now able to act as full
participants within the DIS battlefield
simulation environment. The key to this has
been the use of ModSAF 1.0 (Calder et al,
1993) as an intermediary between Soar and

P —

16

DIS (Schwamb, Koss, & Keirsey, 1994).
ModSAF already contains an interface to
DIS, so it was only necessary to add an
interface between Soar and ModSAF. To do
this we have implemented a cockpit
abstraction on top of ModSAF that allows
TAS to focus on behaving like a pilot, while
ModSAF simulates vehicles, sensors, and
weapons. TAS is not utilizing ModSAF’s
owu pilot behaviors (such as Sweep, CAP,
and Fly Route), as programmed into its tasks
and task frames; however, TAS’s piloting
task has been simplified somewhat by
providing it high-level flight control via a
ModSAF library function that accepts as
parameters a desired altitude, heading, etc.
In addition to adding the cockpit abstraction
(and getting Soar to use it), we have
extended the implementation of Soar so as
to allow multiple independent Soar agents
within a single process. This has allowed
multiple TAS agents to be compiled
together with ModSAF in a single process,’
and thus allowed communication between
the agents and ModSAF to be mediated
directly by calling library functions (rather

than through slower interprocess
communication mechanisms, such as
sockets).

Given a cockpit abstraction, it turned
out to be relatively easy to reuse it in
support of a low-cost interface for human
control of ModSAF aircraft. The Human
Instrument Panel (HIP) provides an X-
Windows-based interface to a vehicle’s
cockpit abstraction (van Lent & Wray,
1994). This enables a human pilot to
perceive graphically-presented sensor
information and to control the aircraft’s
flight, weapons, and sensors at the same
level at which they are controlled by TAS
agents, Easily being able to control
MOodSAF vehicles at this level of detail, and
on any workstation, has proven to be quite
useful in testing and experimenting with

3Soar is currently implemented in C — as is
ModSAF — without which this integration would
have been considerably more difficult.

TAS agents. However, the HIP clearly can’t
completely replace the functionality of
higher fidelity (and cost) flight simulators.

With respect to knowledge acquisition,
the most important development has been
the opening of the WISSARD laboratory at
Oceana Naval Air Station (in Norfolk, VA).
The lab contains two high fidelity (dome)
aircraft simulators; two medium fidelity
aircraft simulators; plus workstations for
running ModSAF, TAS, and several
visualization and analysis tools. The
laboratory has enabled us to add to the
standard knowledge acquisition
methodologies the ability to watch, tape, and
log, engagements among human pilots (both
official "subject matter experts”, as well as
operational pilots), and engagements
between human pilots and TAS agents.

With respect to documentation, we have
developed substantial portions of a three
layer hypertext document that links together:
(1) knowledge about the domain (as
extracted from books, experts, etc.); (2) a
description of the structure and content of
TAS; and (3) the actual rules that comprise
TAS (Koss & Lehman, 1994). This
documentation has been developed within
NCSA Mosaic, a distributed, multi-media,
hypertext system. It is expected to facilitate
understanding and validation of the
knowledge and code embodied in the
automated agents.

Summary and Future

TAS is now capable of performing
competently in beyond-visual range tactical-
air scenarios containing up to three
interacting aircraft. Moreover, it can do so
while flying two types of aircraft in service
of three types of missions. It can also
participate in interactive post-mission
debriefings about its engagements.

These various capabilities arise from
combining knowledge about the tactical air
domain with a set of "intelligent" abilities
embodied by TAS for knowledge-based
decision making, reactive real-time
interaction, coping with multiple interacting

17

goals, integrating information from multiple
sources about multiple agents,
communication and coordination, episodic
memory, and reconstructive self-description
and self-explanation.

The basic TAS agent is coded within
Soar via 145 operators, where each operator
corresponds to a task (or goal) at some level
of granularity. In terms of rules, the
implementation involves approximately
1,500. Most of these rules are responsible
for proposing, selecting, and applying the
operators, but some do perform other tasks
(such as encoding perceptual input, and
elaborating state descriptions). The
debriefing capability adds another 80
operators, amounting also to approximately
1,500 rules. So the combined system
consists of 225 operators and approximately
3,000 rules. The natural language
capabilities that are currently being added
utilize an additional 56 operators, and
approximately 900 rules. Note that these
operator and rule counts are all "before
leaming", as learning can increase both the
number of rules and the number of
operators.

Beyond the agent itself, progress has
also been made on building an infrastructure
to support research and development on
intelligent automated agents for tactical air,
and beyond.

Plans for the coming year include
completing 2v2 BVR tactical air, and
transitioning TAS from tactical air to close
air support (a form of air-to-ground
engagement). We also expect to have
planning, learning, and plan recognition
working routinely in TAS, and to have
limited amounts of natural language also in
routine use. Meanwhile, incremental
improvements are expected to continue on
the infrastructure for research and
development.

Acknowledgment

This research was supported under
subcontract to the University of Southern
California Information Sciences Institute
from the University of Michigan, as part of
contract NO00014-92-K-2015 from the
Advanced Systems Technology Office
(ASTO) of the Advanced Research Projects
Agency (ARPA) and the Naval Research
Laboratory (NRL). Critical support has
been provided by Dennis McBride of
ARPA/ASTO; Tom Brandt, Bob Richards,
and Ed Harvey of BMH Inc.; Andy
Ceranowicz and Joshua Smith of Loral Inc.;
and David Keirsey of the Hughes Aircraft
Co.

References

Anderson, J. R., Boyle, C. F., Corbett, A. T.,
& Lewis, M. W. 1990. Cognitive
modeling and intelligent tutoring.
Artificial Intelligence , 42, 7-49.

Calder, R. B., Smith, J. E., Courtemanche,

A.J.,Mar, J. M. F., & Ceranowicz, A. Z.
1993. ModSAF behavior simulation and
control. Proceedings of the Third
Conference on Computer Generated
Forces and Behavioral Representation.
Orlando, FL: Institute for Simulation &
Training. pp. 347-356.

Johnson, W. L. 1994. Agents that explain
their own actions. Proceedings of the
Fourth Conference on Computer
Generated Forces and Behavioral
Representation. Orlando, FL.

Johnson, W. L. 1994. Agents that learn to
explain themselves. Proceedings of the
Twelfth National Conference on Artificial
Intelligence. Seattle: AAAL, In press.

Jones, R. M. & Laird, J. E. '1994. Multiple
information sources and multiple
participants: Managing situational
awareness in an autonomous agent.
Proceedings of the Fourth Conference on
Computer Generated Forces and
Behavioral Representation. Orlando, FL.

Jones, R. M., Tambe, M., Laird, J. E.,, &
Rosenbloom, P. S. 1993. Intelligent

autornated agents for flight training

simulators. Proceedings of the Third
Conference on Computer Generated
Forces and Behavioral Representation.
Orlando, FL. pp. 33-42.

Jones, R. M., Laird, J. E., Tambe, M., &
Rosenbloom, P. S. 1994. Generating
behavior in response to interacting goals.
Proceedings of the Fourth Conference on
Computer Generated Forces and
Behavioral Representation. Orlando, FL.

Koss, F. & Lehman, J. F. 1994. Knowledge
acquisition and knowledge use in a
distributed IFOR project. Proceedings of
the Fourth Conference on Computer
Generated Forces and Behavioral
Representation. Orlando, FL.

Laird, J. E. & Jones, R. M. 1994.
Coordinated behavior of computer
generated forces in TacAir-Soar.
Proceedings of the Fourth Conference on
Computer Generated Forces and
Behavioral Representation. Orlando, FL.

Laird, J. E., & Rosenbloom, P. S. 1990.
Integrating execution, planning, and
learning in Soar for external
environments. Proceedings of the Eighth
National Conference on Artificial
Intelligence. Boston: AAAI, MIT Press.
pp- 1022-1029.

Lehman, J. F., Lewis, R. L., & Newell, A.
1991. Integrating knowledge sources in
language comprehension. Proceedings of
the Thirteenth Annual Meeting of the
Cognitive Science Society. Hillsdale, NJ,
Erlbaum. pp. 461-466. ‘

Newell, A. 1990. Unified Theories of
Cognition. Cambridge, MA: Harvard
University Press.

Rosenbloom, P. S., Laird, J. E., & Newell,
A. (Eds.) 1993. The Soar Papers:
Research on Integrated Intelligence.
Cambridge, MA: MIT Press.

Rubinoff, R. & Lehman, J. F. 1994. Natural
language processing in an IFOR pilot.
Proceedings of the Fourth Conference on
Computer Generated Forces and
Behavioral Representation. Orlando, FL.

Schwamb, K. B., Koss, F. V., & Keirsey, D.
1994. Working with ModSAF: Interfaces
for programs and users. Proceedings of

the Fourth Conference on Computer
Generated Forces and Behavioral
Representation. Orlando, FL.

Tambe, M. & Rosenbloom, P. S. 1994.
Event tracking in complex multi-agent
environments. Proceedings of the Fourth
Conference on Computer Generated
Forces and Behavioral Representation.
Orlando, FL.

van Lent, M. & Wray, R. 1994. A very low
cost system for direct human control of
simulated vehicles. Proceedings of the
Fourth Conference on Computer
Generated Forces and Behavioral
Representation. Orlando, FL.

Ward, B. May 1991. ET-Soar: Toward an
ITS for Theory-Based Representations.
Doctoral dissertation, School of Computer
Science, Carnegie Mellon University,

Biographies

Paul S. Rosenbloom is an associate
professor of computer science at the
University of Southern California and the
acting deputy director of the Intelligent
Systems Division at the Information
Sciences Institute. He received his B.S.
degree in mathematical sciences from
Stanford University in 1976 and his M.S.
and Ph.D. degrees in computer science from
Camegie-Mellon University in 1978 and
1983, respectively. His research centers on
integrated intelligent systems (in particular,
Soar), but also covers other areas such as
machine learning, production systems,
planning, and cognitive modeling. He is a
Councillor of the AAAI and a past Chair of
ACM SIGART.

W. Lewis Johnson is a project leader at
the University of Southern Califormia
Information Sciences Institute, and a
research assistant professor in the USC
Department of Computer Science. Dr.
Johnson received his A.B. degree in
linguistics in 1978 from Princeton
‘University, and his M.Phil. and Ph.D.
degrees in computer science from Yale
University in 1980 and 1985, respectively.
He is interested in applying artificial

intelligence techniques in the areas of

computer-based training and software
engineering. His current projects are
developing tools that automate the

generation of software documentation, and
that explain the problem solving of
intelligent agents.

Randolph M. Jones received his Ph.D.
in information and computer science from
the University of California, Irvine, in 1989.
He is currently an assistant research scientist
in the Artificial Intelligence Laboratory at
the University of Michigan. His primary
research interests lie in the areas of
intelligent agents, problem solving, machine
learning, and psychological modeling.

Frank V. Koss is a systems research
programmer in the Artificial Intelligence
Laboratory at the University of Michigan,
where he is developing the interface
between the Soar architecture and the
ModSAF simulator. He received his BS in
computer engineering from Carnegie Mellon
University in 1991 and his MSE in computer
science and engineering from the University
of Michigan in 1993. He is a member of
IEEE and AAAL

John E. Laird is an associate professor
of electrical engineering and computer
science and the director of the Artificial
Intelligence Laboratory at the University of
Michigan. He received his B.S. degree in
computer and communication sciences from
the University of Michigan in 1975 and his
M.S. and Ph.D. degrees in computer science
from Camegie Mellon University in 1378
and 1983, respectively. His interests are
centered on creating integrated intelligent
agents (using the Soar architecture), leading
to research in problem solving, complex
behavior representation, machine learning,
cognitive modeling.

Jill Fain Lehman is a research computer
scientist in Camegie Mellon’s School of
Computer Science. She received her B.S.
from Yale in 1981, and her M.S. and Ph:D.
from Carnegie Mellon in 1987 and 1989,

* respectively. Her research interests span the

19

area of natural language processing:

comprehension and generation, models of
linguistic = performance, and machine
leamning techniques for language acquisition.
Her main project is NL-Soar, the natural
language effort within the Soar project.

Robert Rubinoff is a postdoctoral
research fellow in Carnegie Mellon’s School
of Computer Science. He received his B.A.,
MS.E, and Ph.D. from the University of
Pennsylvania in 1982, 1986, and 1992,
respectively; his dissertation research was
on ‘‘Negotiation, Feedback, and Perspective
within Natural Language Generation’’. His
research interests include natural language
processing, knowledge representation, and
reasoning. He is currently working on
natural language generation within the Soar
project.

Karl B. Schwamb is a Senior
Programmer Analyst on the Soar Intelligent
FORces project at the University of
Southern California’s Information Sciences
Institute. He is primarily responsible for the
maintenance of the Soar/ModSAF interface
software described in this article. He
received his M.S. in Computer Science from
George Washington University.

Milind Tambe is a computer scientist at
the Information Sciences Institute,
University of Southern California (USC)
and a research assistant professor with the
computer science department at USC. He
completed his undergraduate education in
computer science from the Birla Institute of
Technology and Science, Pilani, India in
1986. He received ins Ph.D. in 1991 from
the School of Computer Science at Carnegie
Mellon University, where he continued as a
research associate until 1993. His interests
are in the areas of integrated Al systems,
and efficiency and scalability of Al
programs, especially rule-based systems.

Agents that Explain Their Own Actions

W. Lewis Johnson
USC / Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695
johnsonQisi.edu

Abstract

Computer generated battlefield agents need to be
able to explain the rationales for their actions.
Such explanations make it easier to validate agent
wvehavior, and can enhance the effectiveness of the
agents as training devices. This paper describes
an explanation capability called Debrief that en-
ables agents implemented in Soar to describe and
justify their decisions. Debrief determines the mo-
tivation for decisions by recalling the context in
which decisions were made, and determining what
factors were critical to those decisions. In the pro-
cess Debrief learns to recognize similar situations
where the same decision would be made for the
same reasons. Debrief currently being used by the
TacAir-Soar tactical air agent to explain its ac-
tions, and is being evaluated for incorporation into
other reactive planning agents.

1 Introduction

The Soar-IFOR project [15] is developing intelli-
gent agents that can control tactical aircraft in dis-
tributed battlefield simulations. A key objective
of the project is to endow such simulated agents
with human-like behavior. Human players in the
simulation should not be able to tell which units
are controlled by humans and which are controlled
by computer, lest they come to rely on this knowl-
edge. Simulations can serve as an effective test bed
for development and evaluation of tactics only if
the agents realistically employ those tactics.

Yet it is difficult to validate through observation
that agent behavior really is human-like. Behav-
ior depends upon the agent’s goals and situation
assessments, and these can change from moment
to moment. A given action might be appropriate
in one situation, and altogether inappropriate in a
slightly different situation. Therefore the fact that

21

an agent happens to behave realistically in one sce-
nario is no guarantee that the agent will perform
properly in other scenarios. In order to gain con-
fidence in the accuracy of the agent’s behavior it
is helpful to examine its reasoning processes, and
compare them against human reasoning.

In order to produce human-like behavior we have
focussed on modeling human thought processes
and reasoning, using the Soar cognitive architec-
ture [14]. These thought processes are made visi-
ble using an explanation capability, called Debrief,
that describes and answers questions about the
agent’s actions and decisions. Debrief can also
point out alternative actions that might have been
taken, but were rejected. This helps to ensure that
the actions were performed for the right reasons,
and were not chance occurrences.

Debrief was inspired by post-flight debriefings in
tactical iraining. Debriefings are conducted after
training exercises so that instructors and trainees
can understand what went wrong and why, and
draw lessons that can be applied to future en-
gagements. Similar capabilities in Debrief make
it easier for people to understand and improve the
performance of simulated agents.

2 Objectives and Approach

The following are the design objectives for Debrief
in TacAir-Soar.

1. It should describe an engagement from the
agent’s perspective, explaining what the
agent’s objectives where, what actions it took
to meet those objectives, and its assessment
of the unfolding situation.

2. It should accept follow-on questions about
those actions, objectives, and assessments,
justifying them as appropriate.

3. In explaining actions it should use a combi-
nation of media familiar to potential users,
including natural language and diagrams.

4. These capabilities should be provided without
unnecessary impact on the design and imple-
mentation of other agent capabilities.

5. The explanation capability should not be spe-
cific to tactical air-to-air combat, but should
be applicable to a variety of domains.

The most obvious way to provide such explana-
tions would be to generate English paraphrases of
the rules and rule firing traces used by TacAir-
Soar. Yet such techniques have proved to be in-
effective for explaining expert system reasoning
[4, 16, 3], and are likely to be inappropriate in
computer generated forces as well. They contain
too many implementation details, and are too de-
pendent upon the particulars of how knowledge is
encoded in the system. It is necessary to abstract
away from these details, and focus on the essential
knowledge underlying the agent’s decisions.

Another approach might be to encode the under-
lying knowledge explicitly, either in a declarative
form or as abstract meta-rules [2]. Such an ap-
proach has a number of potential problems. First
of all, computer generated forces require a great
variety of reasoning capabilities, including plan-
ning, plan recognition, learning, and geometric
reasoning. The problem solving strategies and do-
main knowledge representations required for many
of these capabilities are matters of current re-
search. If such knowledge were encoded declara-
tively, but the agent does not make direct use of it,
and instead employs procedural rules or codes, the
declarative descriptions will quickly become out of
date as the agent is extended and modified. This is
especially true for experimental intelligent systems
like TacAir-Soar. Yet if it did reason directly from
declarative representations its performance would
suffer, and the design of the agent would be greatly
affected, in contradiction to point 4 listed above.
Automated compilation of declarative knowledge
[13] can help eliminate the performance problems,
but compilation techniques have not yet been em-
ployed in systems that have have as great a variety
of reasoning capabilities as TacAir-Soar does.

Debrief takes a fundamentally different approach
to explanation. In order to determine the ratio-
nales for an agent’s decision, it recalls the situa-
tion in which the decision was taken, and then re-
plays the agent’s tactical reasoning processes. By

22

monitoring the reasoning, and experimenting with
changing the situation in various ways, it discov-
ers the critical factors in the situation that led to
the decision. These results are learned so that
they can be applied to other decisions in simi-
lar situations. In effect the agent constructs a
declarative model of its own reasoning through re-
flection. This is analogous to human explanation
generation—experts often can perform tasks with-
out being conscious of the rationales underlying
their performance, and must reflect afterwards to
determine what those rationales might have been.

Although Debrief was originally intended for ex-
planation in the tactical air-to-air domain, the
implementation is not specific to that domain.
TacAir-Soar is in the process of being adapted
to handle air-to-ground operations; it is expected
that these changes will little or no impact on De-
brief. Plans are underway to apply Debrief to an
entirely different domain, namely automated con-
trol of radar tracking stations in the NASA Deep
Space Network {8, 7].

3 An Example

The following example scenario illustrates how De-
brief is employed. Suppose that the TacAir-Soar
agent is assigned a Barrier Combat Air Patrol
(BARCAP) mission, i.e., to search the skies for en-
emy aircraft and intercept them so that they can-
not threaten a high value unit such as an aircraft
carrier. During the course of the mission the agent
detects a hostile aircraft. The agent intercepts the
aircraft, fires a missile at it which destroys it, and
then resumes its patrol.

After the engagement Debrief can be used to ask
the agent questions. Dialog is conducted via a
menu-oriented interface. First, the user requests
that Debrief describe what took place during the
engagement; it then gives a step-by-step descrip-
tion of the mission. If there is any statement in the
description that the user has a question about, he
or she can button on it with the mouse and request
an elaboration or explanation.

Figure 1 shows part of the display during the
course of the interaction. The user has selected
one of the statements in the description, “I started
using my weapons,” and has requested a justifica-
tion for that decision. The explanation for this
step is displayed in the window shown; the origi-
nal description of the mission has almost entirely
scrolled off the top of the window. It lists sev-

the bogeys intention were unknown or
the bogey were not a contact or
ROE were not achieved or
the intercept geometry were not selected,
Twould have kept flying,
Otherwise, if
ROE were not achieved,
1'would have achioved proximity to the bogey.
1 conciuded that the bogey achieved ROE bocause
ROE was electronic pasitive ID from the E2C and
1had received positive ID from the E2C and
the bogey was & bandit and
electronic positive 1D was attained.

Wait | Continue

| I

Figure 1: The Debrief interaction window

eral reasons why the agent elected to use weapons
against the bogey: the agent had radar contact
with the bogey, it was known to be hostile, the
rules of engagement (ROE) were satisfied, and the
agent had already planned an intercept trajectory
for closing in on the bogey. It also lists alternative
actions that it might have taken but did not; for
example, if ROE had not been satisfied, the agent
would have closed in on the bogey, but would have
refrained from firing weapons at it.

It is also possible to investigate why the agent
reached particular conclusions during the course of
the engagement. For example, since the conclusion
that ROE was achieved was crucial to the agent’s
decision to employ weapons, it would be useful to
find out why the agent reached this conclusion.
This can be accomplished by selecting a conclu-
sion and asking a follow-up question about it. In
the window in the figure the conclusion “ROE was
achieved” has been selected with the mouse, and
an explanation for why this conclusion was made
appears at the bottom of the figure.

4 Architecture of Debrief

Figure 2 shows the overall architecture of De-
brief, and how Debrief fits into the architecture

23

of TacAir-Soar. Like all Soar systems, TacAir-
Soar is divided into problem spaces, each of which
is responsible for a particular subtask. These
problem spaces are organized hierarchically, where
lower level problem spaces accomplish goals that
are posed in the higher level spaces. The top
level space performs the switch between principal
modes of operation, namely accepting mission or-
ders, flying the mission, and debriefing the mis-
sion.

In order to support debriefing, the mission prob-
lem spaces are augmented with an event mem-
ory, which is a record of the events that occurred
during the mission. A set of operators and pro-
ductions monitor TacAir-Soar’s problem solving
state during the execution of the mission in or-
der to construct this memory. A separate work-
ing memory specification indicates which objects
in Soar’s internal working memory should be mon-
itored for state changes. After the engagement De-
brief retrieves information about the engagement
from the event memory and uses it to describe
and explain the mission. The working memory
specification als~ elps to determine how to re-
call episodes fro. . the event memory and analyze
them and what information about those episodes
is presented to ti iser.

The debriefing itself is performed within the De-
brief problem space, which alternates between
prompting the user for questions via the Prompt-
for-Question problem space, and answering them
via the Generate-Answer problem space. Gener-
ating answers involves recalling states in which
events occurred, analyzing the rationales for the
events or the beliefs that the agent held at the
time, and then presenting the results to the user.
The natural language generation capability within
the presentation subsystem is also used in the
Prompt-for-Question problem space to construct
menus of events and decisions that the user may
select from when forming a question.

The key aspects of each of these capabilities within
Debrief will be described in more detail below.

5 Inputing Questions

Analysis of videotapes of mock post-flight debrief-
ings indicates that a variety of types of questions
can arise during the course of a debriefing. The
question input capability is designed to enable
users to pose many of these types of questions,
without making users type their questions in En-

Mission
Problem Spaces

[Event Memory]

NI 7 - -
WM Specification

Top Problem Space

Figure 2: The architecture of Debrief within TacAir-Soar

glish and requiring Debrief to understand natural
language input.

Questions were categorized into major semantic
types, following the methodology that is com-
mon in question-answering systems [10]. Ques-
tion types currently supported include: Describe-
Event—describe an action or event and its cir-
cumstances; Explain-Action—explain why the
agent performed a particular action; Explain-
Conclusion—explain why the agent drew a partic-
ular conclusion; and Explain-Belief—explain why
the agent believed that a particular fact was true.
Instead of inferring the question type from the
user’s input, Debrief requires that the user ex-
plicitly select a question type from a menu. This
avoids the problems of interpreting poorly articu-
lated questions, but does require that the user un-
derstand the meaning of the question types, and
to understand the distinction being made between
actions and conclusions.

Each question applies to a specific event, decision,
or belief. These can be selected via the inter-
face. Imitially when the user selects a question
type Debrief lists the events in its event memory
that are of the appropriate type for the question.
The user may then select an element from this list.

Subsequent questions can be formed in the same
manner, or by selecting fragments of text with the
mouse, using a technique similar to that employed
by Moore and Swartout [12]. In the latter case
the question is taken to refer to the event or belief
described by that fragment of text.

6 Memory and Recall

Event memory in Debrief takes advantage of the
fact that the major problem solving steps in
Soar systems, namely problem spaces and opera-
tors, are represented explicitly in working memory.
Events and decisions are recorded by productions
that check for particular operators being applied.
All major decisions within TacAir-Soar are imple-
mented as operators, as are situation assessments.
For example, the decision to use weapons is per-
formed by an operator called Employ-Weapons, so
a production was added to TacAir-Soar that fires
whenever that operator is applied. An event token
is then added to the event memory indicating the
operator that was applied and the problem space
in which it was applied.

Whenever an event is added to the event memory,
TacAir-Soar’s working memory is checked to see if

there have been any changes since the last event.
Soar’s memory is organized as a collection of ob-
jects with attributes and values. Debrief monitors
a subset of these attributes, and adds a record to
the event memory whenever a change in values oc-
curs.

The decision of what state information record de-
pends upon what information is required during
debriefing to explain decisions. Recording all state
information would be costly in a complex system
such as TacAir-Soar, and proves to be unneces-
sary. The working memory specification deter-
mines what information should be monitored and
recorded. For each attribute of interest the specifi-
cation indicates what types of values the attribute
can take, whether or not an attribute can as-
sume multiple values at once, and how those values
change over time. If the values of the attributes
are themselves complex objects with attributes,
they are specified in the same way.

It was argued in Section 2 that duplicate represen-
tations of knowledge in declarative and procedural
form can lead to maintenance problems. However,
this is not a serious problem in the case of the
working memory specification because the spec-
ification only describes the structure of working
memory, not how that working memory is con-
structed and used. It is therefore relatively im-
mune to modifications to the TacAir-Soar agent’s
rule base. Additionally, Debrief can optionally be
made to check whenever the working memory state
disagrees with the specification, and warn the de-
velopers that this is the case. The advantage is
that Debrief can be incorporated into a new Soar
system simply by identifying the operators in that
system that are to be explained and constructing
a specification for the system’s working memory.

It is important that the event and state recording
processes not add significantly to working memory
size, since this could degrade the run-time perfor-
mance of TacAir-Soar. Therefore Lebrief makes
use of Soar’s learning mechanism, called chunk-
ing, in order to reduce working memory load.
Chunking creates new production rules that Soar
can then use in subsequent problem solving. De-
brief builds so-called recognition chunks during
the course of the engagement in order to facili-
tate the recall of state information. A recogni-
tion chunk will fire whenever a situation that Soar
has encountered before arises again, enabling Soar
to recognize that the situation has been encoun-
tered before. Debrief continually builds recog-
nition chunks during the engagement, associat-

25

ing state changes with events. During debrief-
ing the Recall-State problem space makes use of
these chunks to reconstruct the state in which a
given event occurs. It proposes a range of possi-
ble state changes, and if recognition chunks fire
Debrief then knows that the state change was as-
sociated with the event. Once Recall-State has
reconstructed the working memory state associ-
ated with an event a new chunk is built associ-
ating the event with the complete state descrip-
tion. Then if subsequent questions refer back to
the same event the chunk leads to the immediate
recall of the working memory state.

During the engagement TacAir-Soar’s working
memory size stays relatively constant, but its pro-
duction memory constantly grows as new chunks
are built. One might therefore be concerned
that the additional productions would lead to de-
creased performance. Fortunately, studies have
shown that Soar systems can be run with as many
as a million chunks in them without signficant
slowdown(5].! This number of chunks is far greater
than Debrief has yet been required to produce.

7 Explaining Decisions and Beliefs

Once the circumstances surrounding a decision has
been recalled, it is then possible for Debrief to de-
termine what aspects of those circumstances led to
the decision. Figure 3 shows the problem spaces
that are involved in this process. The first step is
to replay the original decision, to verify that cir-
cumstances leading to the decision have been cor-
rectly recalled. In essence Debrief is performing
a kind of “what-if” simulation internal to Soar,
checking to see what TacAir-Soar would do if it
were in the recalled situation. Interaction between
TacAir-Soar and ModSAF is disallowed, so that
this what-if simulation does not have an unin-
tended effect on the ModSAF vehicle that TacAir-
Soar is controlling.

For example, in the case of the decision to use
weapons described above, Debrief recalls the op-
erator that was applied (Employ-Weapons), the
problem space in which it was applied (Intercept),
and the state in which it is applied (reconstructed
by Recall-State). This information is passed to the
Evaluate-Decision problem space, which in turn
passes control to a problem space called Test Oper-
ator Applicability that sets up the Intercept prob-
lem space so that it can be reinvoked in the re-

1Robert Doorenbos, personal communication.

valuate Decision

Determine
Applicability
Criteria

Test Operator
Applicability

acAir-Soar
Mission PS]

Figure 3: Problem spaces for evaluating decisions

called state. Then control passes to the Inter-
cept problem space. If Intercept again selects the
Employ-Weapons operator, Debrief knows that
the recalled state description contains the infor-
mation that motivated the original application of
Employ-Weapons. Test Operator Applicability
then immediately terminates the what-if simula-
tion and returns to Evaluate-Decision an indica-
tion that the expected operator was in fact ap-
plied.

Reconsidering the original decision made during
engagement is necessary for two reasons. First, it
is possible that the recalled state does not corre-
spond exactly to the situation in which. the de-
cision was originally made. This could happen
if the TacAir-Soar operator was modifying work-
ing memory at the same time that working mem-
ory was being recorded. To deal with this case,
a problem space called Establish-Applicability is
employed to modify the recalled state by compar-
ing it against the state associated with the im-
mediately preceding event and trying to construct
state intermediate between the two in which the
operator can fire. But even if the right state was
recalled it is important to reconsider the deci-
sion because it causes chunks to be built during

26

the process. These chunks summarize the condi-
tions in the recalled state that caused the Employ-
Weapons operator to be selected. Implementa-
tion details internal to the Intercept problem space
that caused the operator to be selected are au-
tomatically filtered out by the chunking process.
The details of how this filtering occurs is beyond
the scope of this paper, but please see [9).

Once it is determined that the recalled operator
is applicable, the next step is to determine what
would happen if the situation were slightly differ-
ent from what was recalled. This helps to iden-
tify what the critical factors are in the state, and
why they are critical. This analysis is performed
in the Determine Applicability Criteria problem
space. This space repeatedly deletes elements
from the recalled state description and checks to
see whether the originally selected operator would
be applied. If the state change does not affect
the applicability the the operator, a chunk pre-
viously built by Test-Operator-Applicability will
fire, recognizing that the operator is still applica-
ble. If the state change is significant, the chunk
will not fire and what-if simulation will again
be performed in the Test-Operator-Applicability
space. If it is found that a different operator is
selected, the name of the operator is returned to
Determine-Applicability-Criteria, which then will
perform further what-if analyses to determine why
that operator was selected. Finally, the results
of these analyses are returned as sets of signif-
icant attribute values associated with each se-
lected operator. This is yet another point where
Soar’s learning mechanism is used to advantage.
The next time TacAir-Soar applies the Employ-
Weapons operator in a similar situation and De-
brief is asked a question about it, it will immedi-
ately be able to recognize the similarity of the situ-
ation and produce an explanation, without having
to perform any what-if simulation at all.

Explaining beliefs involves many of the same
mechanisms that are used to evaluate decisions.
Debrief searches backwards through the event his-
tory for the first event whose associated state in-
cludes the belief in question. Then Debrief re-
moves the belief from the state description, and
performs a what-if simulation of the operator as-
sociated with the event. If during simulation the
belief is added back to the state, that indicates
that the operator was responsible for asserting the
belief into Soar’s working memory. Determine-
Applicability-Criteria can then be used to deter-
mine why that particular operator was selected.

8 Presenting Explanations

Once the necessary analysis is performed by
Debrief, information is presented to the user.
This presentation is performed via a hierarchi-
cal presentation planning process, initiated in the
Present problem space shown in Figure 2. The
planning process is similar to that of other multi-
media generation systems [6, 1], although its abil-
ity to coordinate text and graphics is somewhat
limited.

8.1 Selecting information to present

The first step in the presentation process is select-
ing what information should be presented. If the
question that was asked involved evaluating a de-
cision or belief, this step is trivial: every factor
that was found to lead to the decision or belief
in question is presented. If the user requested a
summary of an event, however, the case is more
complicated. Debrief has a wealth of information
available about every event, in the form of the
state information associated with the event and
any substeps of the event. It must therefore de-
termine which pieces of information are relevant.

Relevance is determined by constructing and
maintaining a model of what the user is expected
to know about the engagement. This is deter-
mined initially through a short questionnaire that
the user fills out when he or she first sits down with
the system. The user indicates the level of famil-
iarity with the mission orders, and with what actu-
ally transpired during the engagement. Depending
upon the answers to these questions Debrief will
copy more or less information from TacAir-Soar’s
working memory into the user model. Later on
when Debrief is planning a summary of a given
event, it compares the recalled state associated
with the event against the user model. If corre-
sponding information is already in the user model
then it is not presented.

If a piece of information is not present in the user
model, Debrief next checks whether it is readily in-
ferrable from other information that has already
been selected for presentation. In particular, De-
brief has knowledge about what facts are read-
ily inferrable as consequences of particular events.
Any such facts are omitted from the explanation.

After each event is described to the user, the user
model is updated. All information that has been
presented, or which is known to be inferrable from
what was presented, is added to the model. How-

27

ever, it is assigned a lower degree of confidence—
just because Debrief tells the user some fact does
not mean that the user then knows it. If the user
requests an elaboration about a particular event,
information assigned to the user model with a low
degree of confidence will still be presented.

8.2 Assigning information to media

Once information has been selected for presenta-
tion, Debrief must then determine what presenta-
tion media to use. It currently has knowledge of
two presentation media: natural language and a
graphical display of aircraft positions in 3-space.
Each presentation medium is specified in terms
of the types of information it is able to present:
the graphical display is limited in its expressibil-
ity, whereas natural language is unlimited. Each
piece of information is then allocated to the avail-
able media depending upon the type of presenta-
tion being given. If a summary description is be-
ing presented, only one medium will be selected,
and graphical media will be preferred over textual
media. Otherwise all available media will be used.

8.2.1 Generating the presentations

At the present time the only medium Debrief can
employ is natural language, because the interface
that will allow Debrief to control the display pro-
grammatically is not yet complete. As soon as the
interface is complete, it will be possible for De-
brief to start presenting the information that it
is already able to assign to that medium. In the
mean time, the presentations are in natural lan-
guage instead. Natural language is produced us-
ing a simple sentence generator loosely based on
Functional Unification Grammar [11].

9 Status and Evaluation

The Debrief system as it currently stands com-
prises thirteen problem spaces, implemented us-
ing eighty Soar operators and 1556 productions.
It currently can describe and/or explain a total of
70 types of events. The natural language gener-
ation component has a vocabulary of 240 words
and phrases. It has been used to describe and ex-
plain events occurring in 1 v 1 engagements, 1 v 2
engagements, and 2 v 1 engagements.

Formative evaluations of Debrief explanations
have been performed with Navy Reserve fighter

—

pilots. These evaluations confirmed that expla-
nations are extremely helpful for validating the
agent’s performance, and building confidence in
it. They also underscored the importance of hav-
ing the agent justify its beliefs—the evaluators fre-
quently wanted to ask questions about assertions
- made by Debrief during the course of the explana-
tion. This experience motivated the work on in-
corporating the Explain-Belief question type into
Debrief. Further evaluations and demonstrations
are planned for later this year.

10 Acknowledgements

This research was supported under subcontract to
the University of Southern California Information
Sciences Institute from the University of Michigan,
as part of contract N00014-92-K-2015 from the
Advanced Systems Technology Office (ASTO) of
the Advanced Research Projects Agency (ARPA)
and the Naval Research Laboratory (NRL). The
author wishes to thank the following people for
their helpful comments and insights: Yolanda
Gil, Paul Rosenbloom, William Swartout, Milind
Tambe, and Lorna Zorman of USC / ISI; Bob
Richards of BMH Inc.; Doug Holmes of ISX, Inc.;
and Richard Lewis of Princeton University. Karl
Schwamb contributed substantially to the devel-
opment of the Debrief user interface.

References

(1] Y. Arens, E.H. Hovy, and M. Vossers. On
the knowledge underlying multimedia presen-
tations. In M. Maybury, editor, Intelligent
Multimedia Interfaces. AAAI Press, 1993. to
appear.

[2] WJ. Clancey. The advantages of abstract
control knowledge in expert system design.
In Proceedings of the National Conference on
Artificial Intelligence, pages 74-78, Washing-
ton, DC, August 1983.

[3] W.J. Clancey. The epistemology of a rule-
based expert system: A framework for expla-
nation. Artificial Intelligence, 20(3):215~251,
1983.

[4] R. Davis. Applications of Meta-Level Knowl-
edge to the Construction, Mainienance, and
Use of Large Knowledge Bases. PhD thesis,
Stanford University, 1976.

28

[5] R.B. Doorenbos. Matching 100,000 learned
rules. In Proceedings of the National Confer-
ence on Artificial Intelligence, pages 290-296,
Washington, DC, August 1993. AAAL

[6) S.K. Feiner and K.R. McKeown. Coordinat-
ing text and graphics in explanation genera-
tion. In Proceedings of the Eighth National
Conference on Artificial Intelligence, pages
442-449, Anaheim, CA, August 1990. MIT
Press.

(7] R.W. Hill and W.L. Johnson. Designing an
intelligent tutoring system based on a reac-
tive model of skill acquisition. In Proceedings
of the World Conference of Artificial Intel-
ligence in Education, pages 273-281, Edin-
burgh, Scotland, 1993.

{8] R.W. Hill and W.L. Johnson. Situated plan
attribution for intelligent tutoring. In Pro-
ceedings of the National Conference on Arti-
ficial Intelligence, Seattle, Washington, 1994.
to appear.

[9) W.L. Johnson. Agents that learn to ex-
plain themselves. In Proceedings of the Na-
tional Conference on Artificial Intelligence,
page forthcoming, Seattle, WA, August 1994.
AAAL

[10] W.G. Lehnert. The Process of Question An-
swering. Lawrence Erlbaum Associates, Hills-
dale, NJ, 1978.

[11} K.R. McKeown and M. Elhadad. A Con-
trastive Evaluation of Functional Unification
Grammar for Surface Language Generation:
A Case Study in the Choice of Connectives,
pages 351-392. Kluwer Academic Publishers,
Norwell, MA, 1991.

[12] J.D. Moore and W.R. Swartout. Pointing: A
way toward explanation dialog. In Proceed-
ings of the Eighth National Conference on Ar-
tificial Intelligence, pages 457—464, Anaheim,
CA, August 1990. MIT Press.

[13] R. Neches, W.R. Swartout, and J.D. Moore.
Enhanced maintenance and explanation of
expert systems through explicit models of
their development. IEEE Transactions on
Software Engineering, SE-11(11):1337-1351,
1985.

[14] A. Newell. Unified Theories of Cognition.
Harvard University Press, Cambridge, MA,
1990.

[15] P.S. Rosenbloom, W.L. Johnson, R.M. Jones,
F. Koss, J.E. Laird, J.F. Lehman, R. Rubi-
noff, K.B. Schwamb, and M. Tambe. Intel-
ligent automated agents for tactical air sim-
ulation: A progress report. In Proceedings
of the Fourth Conference on Computer Gen-
erated Forces and Behavioral Representation,
Orlando, FL, May 1994. Institute for Sim-
ulation and Training, University of Central
Florida.

[16] W.R. Swartout and J.D. Moore. Explanation
in second generation expert systems. In J.-
M. David, J.-P. Krivine, and R. Simmons.,
editors, Second Generation Expert Sysiems.
Springer-Verlag, 1993. To appear.

Biography

W. Lewis Johnson is a research assistant professor
is a project leader at the University of Southern
California Information Sciences Institute, and a
research assistant professor in the USC Depart-
ment of Computer Science. Dr. Johnson received
his A.B. degree in Linguistics in 1978 from Prince-
ton University, and his M.Phil. and Ph.D. degrees
in Computer Science from Yale University in 1980
and 1985, respectively. He is interested in apply-
ing artificial intelligence techniques in the areas of
computer-based training and software engineering.
His current projects are developing tools that au-
tomate the generation of software documentation,
and that explain the problem solving of intelligent
agents.

29

Agents that Learn to Explain Themselves

W. Lewis Johnson
USC / Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695
JohnsonQ@isi.edu

Abstract

Intelligent artificial agents need to be able to
explain and justify their actions. They must
therefore understand the rationales for their own
actions. This paper describes a technique for
acquiring this understanding, implemented in a
multimedia explanation system. The system de-
termines the motivation for a decision by recall-
ing the situation in which the decision was made, .

“and ing the decision under variants of the
original situation. Through experimentation the
agent is able to discover what factors led to the
decisions, and what alternatives might have been
chosen had the situation been slightly different.
The agent learns to recognize similar situations
where the same decision would be made for the
same reasons. This approach is implemented in
an artificial fighter pilot that can explain the mo-
tivations for its actions, situation assessments,
and beliefs,

Introduction

Intelligent artificial agents need to be able to provide
explanations and justifications for the actions that they
take. This is especially true for computer-generated
forces, i.e., computer agents that operate within bat-
tlefield simulations. Such simulations are expected to
have an increasingly important role in the evaluation
of mnnonl, tactics, doctrines, and new ns sys-
tems, and in training (Jones 1993). Validati-n of mch
forces is critical—they should behave as humans would
in similar circumstances. Yet it is difficult to val-
idate behavior through external observation; behav-
ior depends upon the agent’s assessment of the situa-
tion and its changing goals from moment to moment.
Trainees can greatly benefit from automated forces
that can explain their actions, so that the trainees can
learn how experts behave in various situations. Po-
tential users of computer-generated forces therefore at-
tach great importance to explanation, just as potential
users of computer-based medical consultation systems
do (Teach & Shortliffe 1984).

Explanations based on traces of rule firings or para-
phrases of rules tend not to be successful (Davis 1976;

30

Swartout & Moore 1993; Clancey 1983b). They con-
tain too many nmplementatxon details, and lack in-
formation about the domain and about rationales for
the design of the system. More advanced explanation
techniques encode domain knowledge and problem-
aolvmg strategies and employ them in ptoblem solv-
ing either as metarules (Clancey 1983a) or in com-
piled form (Neches, Swartout, & Moore 1985). In the
computer-generated forces domam, however, problem-
solving strategies and domain knowledge representa-
tions are matters of current research. An intelligent
agent in such a domain must integrate capabilities of
perception, reactive problem solving, planning, plan
recognition, learning, geometric reasoning and visual-
isation, among others, all under severe real-time con-
straints, It is difficult to apply meta-level or compils-
tion approaches in such a way that all of these require-
ments can be met at once.

This paper describes a system called Debrief that
takes a different approach to explanation. Explana-
tions are constructed after the fact by recalling the
situation in which a decision was made, reconsidering
the decision, and through experimentation determin-
ing what factors were critical for the decision. These
factors are critical in the sense that if they were not
present, the outcome of the decision process would
have been different. Details of the agent’s implementa-
tion, such as which individual rules applied in mahng
the decision, are automatically filtered out. It is ‘not
necessary to miaintain a complete trace of rule
in order to produce explanations. The relationshipe
between situational factors and decisions are learned
80 that they can be applied to similar decisions.

This approach of basing explanations on abstract as-
sociations between decisions and situational factors has
similarities to the REX system (Wick & Thompeon
1989). But while REX requires one to create a sep-
arate knowledge base to support explanation, Debrief
automatically learns much of what it needs to know
to generate expla.na.tions. The approach is related to
techniques for acquiring domain models through ex-
perimentation (Gil 1993), except that the agent learns
to model not the external world, but itself.

Figure 1: Part of a an event summary

Debrief is implemented as part of the TacAir-Soar
fighter pilot simulation (Jones et al. 1993). Debrief
can describe and justify decisions using a combination
of natural language and diagrams. It is written in a
domain-independent fashion so that it can be read-
ily incorporated into other intelligent systems. Cur-
rent plans call for incorporating it into the REACT
system, an intelligent assistant for operators of NASA
Deep Space Network ground tracking stations (Hill &
Johnson 1994).

An Example
Consider the following scenario. A fighter is assigned
a Combat Air Patrol (CAP) mission, i.e., it should fly
a loop pattern, scanning for enemy aircraft. During
the mission a bogey (an unknown aircraft) is spotted
on the radar. The E2C, an aircraft whose purpose
is to scan the airspace and provide information to the
fighters, confirms that the bogey is hostile. The fighter
closes in on the bogey, fires a missile which destroys the
bogey, and then resumes its patrol.

After each mission it is customary to debrief the pi-
lot. The pilot is asked to describe the engagement
from his perspective, and explain key decisions along
the way. The pilot must justify his assessments of the
situation, e.g., why the bogey was considered a threat.

TacAir-Soar is able to simulate pilots executing mis-
sions such as this, and Debrief is able to answer ques-
tions about them. TacAir-Soar controls a simulation
environment called ModSAF (Calder et al. 1993) that
simulates the behavior of military platforms. TacAir-
Soar receives information from ModSAF about aircraft
status and radar information, and issues commands to
fly the simulated aircraft and employ weapons. After
an engagement users can interact with Debrief to ask
questions about the engagement.

The following is a typical interaction with Debrief.

the bogey wus & radar-contact and
the bogey was the primary-threat.
Otherwise,

the intercept geometry were not selected or
ROE were not achieved or

the bogey were not & radar—contact or

therewas no

1 would have achieved praximity o the bogey.
1 concluded that the bogey achieved ROE because

the bagey was a bandit and

1 had received pocditive ID from the E2C and

electronic positive 1D was sttained.

Wait Continue Qear

Figure 2: Explanations of the agent’s decisions

Questions are entered through a window interface, by
selecting a type of question and pointing to the event or
assertion that the question refers to. The first question
selected is of type Describe-Event, i.e., describe some
event that took place during the engagement; the event
choeen is the entire mission. Debrief then generates a
summary of what took place during the mission. The
user is free to select statements in the summary and
ask follow-on questions about them.

Figure 1 shows part of a typical mission summary.
One of the statements in the summary, “I started using
my weapons,” has been selected by the user, so that
a follow-on question may be asked about it. Figure 2
shows the display at a later point in the dialog, after
follow-on questions have been asked. First, a ques-
tion of type Explain-Action was asked of the decision
to employ weapons, i.e., explain why the agent chose
to perform this action. The explanation appears in the
figure, beginning with the sentence “I started using my
weapons because the intercept geometry was selected
and...” Debrief also lists an action that it did not take,
but might have taken under slightly different circum-
stances: flying toward the bogey to decrease distance.

One can see that the agent’s actions are motivated
largely by previous assessments and decisions. The
bottom of Figure 2 shows the answer to a follow-on
question relating to one of those assessments, namely
“ROE was achieved,”! Debrief l:sts the following fac-

1ROE stands for Rules of Engagement, i.e., the condi-
tions under which the fighter is authorized to engage the
enemy.

tors: the bogey was known to be hostile (i.e., a
“bandit”), the bogey was identified through electronic
means and confirmation of the identification was ob-
tained from the E2C.

In order to answer such questions, Debrief does the
following. First, it recalls the events in question and
the situations in which the events took place. When
summarising events, it selects information about the
intermediate states and subevents that should be pre-
sented, selects appropriate media for presentation of
this information (the graphical display and/or natu-
ral language), and then generates the presentations.
‘To determine what factors in the situation led to the
action or conclusion, Debrief invokes the TacAir-Soar
problem solver in the recalled situation, and obeerves
what actions the problem solver takes. The situation
is then repeatedly and systematically modified, and
the effects on the problem solver’s decisions are ob-
served. Beliefs are explained by reca.lhng the situation
in which the beliefs arose, determining what decisions
caused the beliefs to be asserted, and determining what
factors were responsible for the decisions.

Implementation Concerns

Debrief is implemented in Soar, a problem-solving ar-
chitecture that implements a theory of human cogni-
tion(Newell 1990). Problems in Soar are represented
as goals, and are solved within problem spaces. Each
problem space consists of a state, represented as a set
of attribute-value pairs, and a set of operators. All pro-
cessing in Soar, including applying operators, propos-
ing problem spaces, and constructing states, is per-
formed by productions. During problem solving Soar
repeatedly selects and applies operators to the state.
When Soar is unable to make progress, it creates a new
subgoal and problem space to determine how to pro-
ceed. Results from these subspaces are saved by Soar’s
chunking mechanism as new productions, which can be
applied to similar situations.

The explanation techniques employed in Debrief are
not Soar-specific; however, they do take advantage of
certain features of Soar.

e The explicit problem space representation enables
Debrief to monitor problem solving when construct-
ing explanations.

o Since Soar applications are implemented in produc-
tion rules, it is fairly straightforward to add new
rules for explanation-related processing.

o Learning enables Debrief to reuse the results of pre-
vious explanation processing, and build up knowl-
edge about the application domain.

The current implementation of Debrief consists of
thirteen Soar problem spaces. Two are responsible for
inputing questions from the user, three recall events
and states from memory, four determine the motiva-
tions for actions and beliefs, three generate presenta-
tions, and one provides top-level control. The follow-

32

ing sections describe the system components involved
in determining motivations for decisions and beliefs;
other parts of the system are described in (Johnson
1994).

Memory and Recall

In order for Debrief to describe and explain decisions,
it must be able to recall the decisions and the situa-
tions in which they occurred. In order words, the agent
requires an episodic memory. Debrief includes produc-
tions and operators that execute during the problem
solving process in order to record episodic information,
and a problem space called Recall-State that recon-
structs states using this episodic information.

The choice of what episodic information to record
is determined by a specification of the agent’s working
memory state. This specification identifies the state
attributes that are relevant for explanation, and iden-
tifies their properties, e.g., their cardinality and signa-
ture, and how the attnbute .values may change during
problem solvmg In order to apply Debrief to a new
problem solver, it is necessary to supply such a specifi-
cation for the contents of the problem solver’s working
memory, and indicate which operators implement de-
cisions what should be explainable. However, it is not
necessary to specify how the problem solver uses its
working memory in making decisions—that is deter-
mined by Debrief automatically.

When the problem solver applies an operator that
as marked as explainable, Debrief records the operator
application in a list of events that took place during
the problem solving. It also records all attribute values
that have changed since the last problem solving event
that was recorded.

Debrief then builds chunks that associate the state
changes with the problem solving event. Once these
chunks are built, the state changes can be deleted from
working memory, because the chunks are sufficient to
enable Debrief to recall the working memory state.
During explanation, when Debrief needs to recall the
state in which a problem solving event occurred, it
invokes the Recall-State problem space. This space
reconstructs the state by proposing possible attribute
values; the chunks built previously fire, selecting the
value that was associated with the event. Recall-State
aggregates these values into a copy of the state at the
time of the original event, and returns it. This result
is chunked as well, enabling Debrief immediately to re-
call the state associated with the event should it need
to refer back to it in the future. This process is an
instance of data chunking, & common mechanism for
knowledge-level learning in Soar systems (Rosenbloom,
Laird, & Newell 1987).

Debrief thus makes extensive use of Soar’s long term
memory, i.e., chunks, in constructing its episodic mem-
ory. In a typical TacAir-Soar run several hundred such
chunks are created. This is more economical than sim-
ply recording a' trace of production firings, since over

e

Tes:-oPaTr-Appuwm:y

StTaton

Figure 3: The process of evaluating decisions

6000 productions fire in a typical TacAir-Soar run.
Since Soar has been shown be able to handle memories
containing hundreds of thousands of chunks (Dooren-
bos 1993), there should be little difficulty in scaling up
to more complex problem solving applications.

Explaining Actions and Conclusions

Suppose that the user requests the motivation for the
action “I started using my weapons.” Debrief recalls
the type of event involved, operator that was applied,
the problem space in which it was applied, and the
problem solving state. In this case the event type is
Start-Event, i.e., the beginning of an operator appli-
cation, the operator is named Employ-Weapons, and
the problem space is named Intercept. The situation
was one where the agent had decided to intercept the
bogey, and had just decided what path to follow in per-
forming the intercept. (called the intercept geometry).

Analysis of recalled events such as this proceeds as
shown if Figure 3. The first step, testing applicabil-
ity, verifies that TacAir-Soar would select an Employ-
Weapons operator in the recalled state. An operator
called Test-Operator-Applicability performs the veri-
fication, by setting up a “mental simulation” of the
original decision, and monitoring it to see what opera-
tors are selected.

This initial test of operator applicability is impor-
tant for the following reasons. State changes are not
recorded in episodic memory until the operator has
already been seiected. The operator might therefore
modify the state before Debrief has a chance to save
it, making the operator inapplicable. This is not a
problem in the case of Employ-Weapons, but if it were
Debrief would attempt to establish applicability, which
involves recalling the state immediately preceding the
state of the event, and trying to find an interpolation
of the two states in which the operator would be se-
lected. But even when recalling the precise problem
solving state is not » problem, verifying applicability

befeSuo)] B> Appicaii
| \:" -

is useful because it causes chunks to be built that fa-
cilitate subsequent analysis.

After a state has been found in which the recalled
operator is applicable, the next step is to determine
applicability criteria, i.c., identify what attributes of
‘he state are responsible for the operator being se-
lected. This also involves applying the Test-Operator-
Applicability operator to construct mental simulations.

Mental simulation

Given the problem space Intercept, the recalled state,
the operator Employ-Weapons, and the decision Start-
event(Employ-Weapons), Test-Operator-Applicability
operates as follows. It creates an instance of the In-
tercept problem space as a subspace, and assigns as its
state a copy of the recalled state. The working memory
specification described above is helpful here: it deter-
mines which attributes have to be copied. This state
is marked as a simulation state, which activates a set
of prcductions responsible for monitoring mental sim-
ulations. Test-Operator-Applicability copies into the
simulation state the event and the category of decision
being evaluated. There are three such categories: per-
ceptions, which recognize and register some external
stimulus, conclusions, which reason about the situa-
tion and draw inferences from it, and actions, which
are operations that have some effect on the external
world. Employ-Weapons is thus an action. The In-
tercept problem space is disconnected from external
sensors and effectors (the ModSAF simulator), so that
mental simulation can be freely performed. Execution

- then begins in the problem space. The first operator

that is selected is Employ-Weapons. The monitoring
productions recognize this as the desired operator, re-
turn a flag to the parent state indicating that the de-
sired event was observed, and the mental simulation is
terminated. If a different operator or event had been
selected instead, Debrief would be checked to see if
it is of thé same category as the expected operator,
i.e., another action. If not, simulation is permitt~d to
continue; otherwise simulation is terminated and the
a description of the operator that applied instead is
returned.

Whenever a result is returned from mental simula-
tion, a chunk is created. Such chunks may then be
applicable to other situations, making further men-
tal simulation unnecessary. Figure 4 shows the chunk
that is formed when Debrief simulates the selection of

" the Employ-Weapons operator. The conditions of the

33

chunk appear before the symbol — and actions follow.
Variables are symbols surrounded by angle brackets,
and attributes are preceded by a carat (A). The condi-
tions include the expected operator, Employ-Weapons,
the problem space, Intercept, and properties of the
state, all properties of the bogey. If the operator is
found to be inapplicable, a different chunk is produced,
that indicates which operator is selected instead of the
expected one.

(sp chunk-230 :chunk
(goal <g1> “operator <oi> “state <s1>)
(<01> “name test-operator-applicability
“expected-operator employ-weapons
“expected-step *none*
“problem-space intercept)
“simulated-state <ri>)
“local-state <11>)
“bogey <b1>)
“intention known-hostile
“roe~achieved syese¢
“intercept-geometry-selected *yess
“contact syes#)
“primary~threat <bi>)

(s8>
(<>
>
(<v1>

<11>
-—>

(<s1> “applicable-operator employ-weapons))

Figure 4: An example chunk

These chunks built during mental simulation have
an importaut feature—they omit the details of how the
operator and problem space involved is implemented.
This is an inherent feature of the chunking process,
which traces the results of problem solving in a prob-
lem space back to elements of the supergoal problem
space state. In this case the state recalled from episodic
memory is the part of the supergoal problem space
state, 8o elements of the recalled state go into the left
hand side of the chunk.

Determining the cause for decisions

At this point it would be useful to examine the chunks
built during mental simulation in order to proceed to
generate the explanation. Unfortunately, productions
in a Soar system are not inspectable within Soar. This
limitation in the Soar architecture is deliberate, reflect-
ing the difficulty that humans have in introspecting on
their own memory processes. It does not a serious
problem for Debrief, because the chunks built during
mental simulation can be used to recognize which at-
tributes of the state are significant.

The identification of significant attributes is per-
formed in the Determine-Applicability-Criteria prob-
lem space, which removes attributes one by one and re-
peatedly applies Test-Operator-Applicability. If a dif-
ferent operator is selected, then the removed attribute
must be significant. If the value of a significant at-
tribute is a complex objecti, then each attribute of that
object is analyzed in the same way; the same is true for
any significant values of those attributes. Meanwhile,
if the variants resulted in different operators being se-
lected, the applicability criteria for these operators are
identified in the same manner. This generate-and-test
approach has been used in other Soar systems to enlist

ition chunks in service of problem solving (Vera,
Lewis, & Lerch 1993), and is similar to Debrief’s mech-
anism for reconstructing states from episodic memory.

34

Since the state representations are hierarchically orga-
nized, the significant attributes are found quickly.

If chunking were not taking place, Debrief would be
performing a long series of mental simulations, moet of
which would not yield much useful information. But
the chunks that are created help to ensure that vir-
tually every mental simulation uncovers a significant
attribute, for the following reason. Subgoals are cre-
ated in Soar only when impasses occur. Test-Operator-
Applicability instantiates the mental simulation prob-
lem space because it tries to determine whether the
recalled operator is applicable, is unable to do so, and
reaches an impasse. When chunks such as the one in
Figure 4 fire, they assert that the operator is appli-
cable, 8o no impasse occurs. Mental simulation thus
occurs only in situations that fail to match the chunks
that have been built so far. In the case of the Employ-
Weapons operator, a total of seven mental simulations
of variant states are required: two to determine that
the bogey is relevant, and five to identify the bogey’s
relevant attributes.

Furthermore, even these mental simulations become
unnecessary as Debrief gains experience explaining
missions. Suppose that Debrief is asked to explain a
different Employ-Weapons event. Since most of the
significant features in the situation of this new event
are likely to be similar to the significant features of the
previous situation, the chunks built from the previous
mental simulations will fire. Mental simulation is re-
quired for the situational features that are different, or
if the operator was selected for different reasons.

Two kinds of chunks are built when Determine-
Applicability-Criteria returns its results. One type
identifies all of the significant features in the situa-
tion in which the decision was made. The other type
identifies an operator that might have applied instead
of the expected operator, and the state in which the
operator applies. These chunks are created when men-
tal simulation determines that an operator other than
the expected one is selected. Importantly, the chunks
fire whenever a similar decision is made in a similar
situation. By accumulating these chunks Debrief thus
builds an abstract model of the application domain,
associating decisions with their rationales and alter-
natives. The problem solver’s performance-oriented
knowledge is reorganized into a form suited to sup-
porting explanation.

Performing mental simulation in modified states
complicates mental simulation in various respects. The
result of deleting an attribute is often the selection of
an operator in mental simulation to reassert the same
attribute. Debrief must therefore monitor the simu-
lation and detect when deleted attributes are being
reasserted. The modified state may cause the problem
solver to fail, resulting in an impasse. Mental sim-
ulation must therefore distinguish impasses that are
a normal result of problem solving from impasses that
suggest that the problem solver is in an erroneous state.

There is one shortcoming of the analysis technique
described here. Chunking in Soar cannot always back-
trace through negated conditions in the left hand sides
of productions. Therefore if the problem solver opted
for a decision because some condition was absent in
the situation, Debrief may not be able to detect it.
Developers of Soar systems get around this problem in
chunking by using explicit values such as *unknown*
to indicate that information is absent. This same tech-
nique enables Debrief to identify the factors involved.

Relationship to other exploratory learning
approaches

The closest correlate to Debrief’s decision evaluation
capability is Gil’s work on learning by experimentation
(Gil 1993). Gil’s EXPO system keeps track of operator
applications, and the states in which those operators
were applied. If an operator is found to have differ-
ent effects in different situations, EXPO compares the
states to determine the differences. Another system by
Scott and Markovich (Scott & Markovich 1993) per-
forms an operation on instances of a class of objects,
to determine whether it has different effects on differ-
ent members of the class. This enables it to discover
discriminating characteristics withir the class.

Some exploratory learning systems, such as Raja-
money'’s systems (Rajamoney 1993), invest significant
effort to design experiments that provide the maximom
amount of information. This is necessary because ex-
periments can e costly and can have persistent effects
on the environment. Debrief’s chunking-based tech-
nique filters out irrelevant experiments automatically,
without significant effort. Side events on the environ-
ment are not a concern during mental simulation.

Explaining Beliefs

Explaining beliefs, e.g., that ROE was achieved, in-
volves many of the same analysis steps used for ex-
plaining decisions. Debrief starts by searching mem-
ory for the nearest preceding state in which the belief
came to be held. It determines what operator was
being applied during that state, and uses Establish-
Applicability if necessary to make sure that the opera-
tor applies in the recalled state. If the belief had to be
retracted in order to make Test-Operator-Applicability
succeed, then the operator was responsible for assert-
ing the belief. Such is the case for the belief that ROE
is achieved, which is asserted by an. operator named
ROE-Achieved. Otherwise, Debrief would remove the
belief and attempt mental simulation again; if the be-
lief is asserted in the course of applying the operator,
the operator is probably responsible for the belief.

Summary of the Effects of Learning

Learning via chunking takes place throughout the De-
brief system. The following is a summary of the differ-
ent types of chunks that are produced:

o Episodic memory recognition chunks: event + at-
tribute value — recognition;

o State recall chunks: event — state;

e Mental simulation chunks: event + problem space
+ state — applicable or inapplicabie 4 alternative
operator;

o Applicability analysis chunks: event + problem
space + state — significant state attributes; event
+ problem space + state — alternative operator +
alternative state;

o Natural language generation chunks: case frame —
list of words; content description — list of utter-
ances;

o Presentation chunks: content description + user
model — utterances + media control commands +
user model updates.

The presentation mechanisms that yield the latter two
types of chunks are described in (Johnson 1994). Alto-
gether, these chunks enable Debrief to acquire signif-
icant facility in explaining problem solving behavior.
These chunks result in speedups during the course of
explaining a single mission. Future experiments will
determine the transfer effects between missions.

Evaluation and Status

The implementation of Debrief comprises over 1700
productions; in a typical session these are augmented
by between 500 and 1000 chunks. Debrief currently can
describe and/or explain a total of 66 types of events in
the tactical air domain. Its natural language gener-
ation component has a vocabulary of 269 words and
phrases. Debrief can explain a range of one-on-one
and one-on-two air-to-air engagements.

Formative evaluations of Debrief explanations have
been performed with US Naval Reserve fighter pi-
lots. These evaluations confirmed that explanations
are extremely helpful for validating the agent’s per-
formance, and building confidence in it. They also
underscored the importance of having the agent jus-
tify its beliefs—the evaluators frequently wanted to ask
questions about assertions made by Debrief during the
course of the explanation. This motivated the develop-
ment of support for the Explain-Belief question type.
There was immediate interest on the part of the sub-
ject matter experts in using Debrief to understand and
validate the behavior of TacAir-Soar agents.

The weakest point of the current system is its natu-
ral language generation capability. However, this was
found not to be a major concern for the evaluators.
Their primary interest was in understanding the think-
ing processes of TacAir-Soar, and to the extent that
Debrief made that reason: 3 apparent it was consid-
ered effective.

Conclusion

This paper has described a domain-independent tech-
nique for analyzing the reasoning processes of an in-
telligent agent in order to support explanation. This
technique reduces the need for extensive knowledge ac-
quisition and special architectures in support of expla-
nation. Instead, the agent can construct explanations
on its own. Learning plays a crucial role in this process.
Next steps include extending the range to questions
that can be answered, improving the natural language
generation, and makmg greater use of multi-media pre-
sentations. There is interest in umng the mental simu-
lation framework described here to improve the agent’s
problem solving performance, by discovering alterna-
tive decision choices with improved outcomes.

Acknowledgements

The author wishes to thank Paul Rosenbloom, Milind
Tambe, and Yolanda Gil for their helpful comments.
Dr. Johnson was supported in part by the ARPA and
the Naval Research Laboratory under contract number
N00014-92-K-2015 (via a subcontract from the Univer-
sity of Michigan). Views and conclusions contained in
this paper are the author’s and should not be inter-
preted as representing the official opinion or policy of
the U.S. Government or any agency thereof.

References
Calder, R.; Smith, J.; Courtemanche, A.; Mar, J.; and
Ceranowics, A. 1993. ModSAF behavior simulation
and control. In Proceedings of the Third Conference
on Computer Generated Forces and Behavioral Rep-
reseniation, 347-359. Orlando, FL: Institute for Sim-
ulation and Training, University of Central Florida.

Clancey, W. 1983a. The advantages of abstract con-
trol knowledge in expert system design. In Proceed-
ings of the National Confcrcucc on Artificial Intelli-
gence, T4-T8.

Clancey, W. 1983b. The epistemology of a rule-based
expert system: A framework for explanation. Artifi-
cial Intelligence 20(3):215-251.

Davis, R. 1976. Applications of Mela-Level Knowl-
edge to the Consiruction, Maintenance, and Use of
Large Knowledge Bases. Ph.D. Dissertation, Stanford
University.

Doorenboe, R. 1993. Matching 100,000 learned rules.
In Proceedings of the National Conference on Artifi-
cial Intelligence, 290-296. Menlo Park, CA: AAAI

Gil, Y. 1993. Efficient domain-independent experi-
mentation. Technical Report ISI/RR;—93-337, USC /
Information Sciences Institute. Appears in the Pro-
ceedings of the Tenth International Conference on
Machine Learning.

Hill, R., and Johnson, W. 1994. Situated plan attri-
bution for intelligent tutoring. In Proceedings of the
National Conference on Artificial Intelligence.

36

Johnson, W. 1994. Agents that explain their own ac-
tions. In Proc. of the Fourth Conference on Computer
Generated Forces and Behavioral Representation. Or-
lando, FL: Institute for Simulation and Training, Uni-
versity of Central Florida. World Wide Web access:
http://www.isi.edu/soar/debriefable.html.

Jones, R.; Tambe, M.; Laird, J.; and Rosenbloom, P.
1993. Intelligent automated agents for flight training
simulators. In Proceedings of the Third Conference
on Computer Generated Forces and Behavioral Rep-
resentation, 33-42. Orlando, FL: Institute for Simu-
lation and Training, University of Central Florida.

Jones, R. 1993. Using CGF for analysis and combat
development. In Proceedings of the Third Conference
on Computer Generated Forces and Behavioral Rep-
resentation, 209-219. Orlando, FL: Institute for Sim-
ulation and Training, University of Central Florida.

Neches, R.; Swartout, W.; and Moore, J. 1985.
Enhanced maintenance and explanation of expert
systems through explicit models of their develop-
ment. JEEE Transactions on Software Engineering
SE-11(11):1337-1351.

Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, MA: Harvard University Press.

Rajamoney, S. 1993. The design of discrimination
experiments. Machine Learning 185-203.

Rosenbloom, P.; Laird, J.; and Newell, A. 1987.
Knowledge level learning in Soar. In Proceedings of
the Seventh National Conference on Artificial Intelli-
gence, 618-623. Menlo Park, CA: American Associa-
tion for Artificial Intelligence.

Scott, P., and Markovich, S. 1993. Experience se-
lection and problem choice in an exploratory learning
system. Machine Learning 49-68.

Swartout, W., and Moore, J. 1993. Explanation in
second generation expert systems. In David, J.-M.;
Krivine, J.-P.; and Simmons., R., eds., Second Gen-
eration Ezpert Systems. Springer-Verlag. 543-585.
Teach, R., and Shortliffe, E. 1984. An analysis of
physicians’ attitudes. In Buchanan, B., and Shortliffe,
E., eds., Rule-Based Ezpert Systems: The MYCIN
Ezperiments of the Stanford Hewristic Programming
Project. Reading, MA: Addison-Wesley. 635-652.
Vera, A.; Lewis, R.; and Lerch, F. 1993. Situ-
ated decision-making and recognition-based learning:
Applying symbolic theories to interactive tasks. In
Proceedings of the Fifteenth Annual Conference of
the Cognitive Science Society, 84-95. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Wick, M., and Thompson, W. 1989. Reconstructive
explanation: Explanation as complex problem solv-
ing. In Proceedings of the Eleventh Intl. Joint Conf.
on Artificial Intelligence, 135-140. San Mateo, CA:
Morgan Kaufmann.

Multiple Information Sources and Multiple

Participants: Managing Situational Awareness in an

Autonomous Agent

Randolph M. Jones and John E. Laird
Artificial Intelligence Laboratory
University of Michigan
1101 Beal Avenue
Ann Arbor, MI 48109-2110

Abstract

One of the most important tasks in e
tactical engagement is to maintain aware-
ness of the current situation. This is as
true for simulated intelligent agents as it
is for humans in real engagements. We
have identified two key capabilities that
are required for maintaining situational
awareness: managing and synthesizing
information from a variety of informa-
tion sources, and correctly identifying and
sorting engagement participants into an
appropriate mental representation. This
paper discusses our efforts in addressing
these capabilities within the TacAir-Soar
system.

An intelligent simulated agent must be
able to observe and interpret the world
it is operating in. This includes observ-
ing how the world reacts to behaviors
generated by the agent, as well as behav-
iors generated by other agents within the
simulation. As the world changes, the
agent must continuously build and main-
tain a “mental picture” of the world’s
current state (i.e., maintain situational
awareness). Otherwise there is no hope
of generating appropriate behaviors to

accomplish the agent’s goals. In order to
maintain such a picture, the agent should
use whatever information sources it has
available. In general, more information
sources are better, but having multiple
sources demands that the agent be able
to synthesize t..e different types of infor-
mation in order to form a representation
of the world that is as complete and cor-
rect as possible.

In earlier work (Jones, Tambe, Laird, &
Rosenbloom, 1993) we concentrated on
building agents that generated reason-
able behavior given rather strong assump-
tions about world information. The past
TacAir-Soar agent assumed that there
were at most two agents operating in the
simulated tactical air environment: the
agent itself and one potential enemy. In
addition, the agent had only two sources
of information: cockpit controls reported
information about the agent’s vehicle and
weapous, and a radar reported informa-
tion about the other participant in the
environment.

This arrangement allowed the system to
generate some tactical behaviors, but it
greatly limited the types of situations in
which TacAir-Soar could function. More
typically, a tactical air agent finds itself

37

in situations similar to that shown in Fig-
ure 1. There can be a number of partic-
ipants in the engagement, and a number
of ways to gather information about these
agents.

Thus, in our current work, we have ex-
panded the abilities of the TacAir-Soar
agent to manage information. The cur-
rent agent is able to maintain mental
representations of any number of other
participants in the simulation.! In addi-
tion, the agent now synthesizes informa-
tion from a number of different sources.
Each agent receives information visu-
ally, from its radar, and via radio from
other participants in the engagement.
These increases in capabilities are nec-
essary in order for TacAir-Soar to func-
tion reasonably in the complex domain
of tactical flight. However, they also in-
troduce a number of complexities to the
task of maintaining situational aware-
ness, or keeping a mental picture of what
is happening in the world. We feel that
maintaining situational awareness boils
down to two cognitive capabilities: man-
aging information from multiple sources
and managing information about multiple
participants in an engagement. This pa-
per discusses our approach to addressing
these two broad issues within the TacAir-
Soar system.

Managing multiple information
sources

Besides receiving information from its
own vehicle'’s instruments and gauges, the

1 In theory this number is unbounded, but
in practice agent performance can degrade
dramatically when it has too many other
agents to pay attention to.

38

current version of TacAir-Soar receives
information about other participants
from three basic sources. The agent may
receive information from a visual con-
tact with another simulation participant
such as another airplane (this informa-
tion comes in through a DIS visual object
package). The agent may achieve a radar
contact with a participant. Finally, the
agent may receive communicated infor-
mation about another participant (this
information may come from a ground
controller, an air controller, or perhaps

a section or division partner). In addi-
tion, TacAir-Soar periodically records
position information for current contacts.
Thus, when no active (visual, radar, or
communication) contact information is
available, the agent’s memory becomes a
fourth source of information.

When there is only one active informa-
tion source, things are relatively simple.
The system simply uses the information
available to track the contact. This may
not always be the best or most up-to-date
information, but the system can only
make do with what it has. When there
are multiple active information sources
describing contact with a particular par-
ticipant, difficulties may arise. In this
case, there is a decision to be made about
where to look for the correct information.
Some types of information are only avail-
able from particular types of sources, but
others are provided by all of the infor-
mation sources. For example, both radar
and visual information can provide the
relative position of another airplane, but
radar can provide a more accurate mea-
surement of the airplane’s altitude and
speed. In addition, information sources
have different update rates, so some may
contain “stale” information at certain

Partner: ...

Bogeyl: ...

Bogey2: ...

o “‘Commit Bearing 30, Angels 15"’

|
—

Figure 1. A typical engagement involving multiple participants and multiple
sources of information.

39

times. For example, visual information
has an almost instantaneous update rate,
radar information depends on the speed
of the actual radar sensors, and commu-
nicated information is updated relatively
slowly. TacAir-Soar currently prioritizes
its information sources by assuming that
visual information is generally better
than radar, radar is generally better than
communication, and communication is
generally better than memorized infor-
mation. In addition, the system ranks
current information by remembering how
long it has been since the information
was last updated. When it wants to look
up information for a particular partici-
pant, it uses information from the best
existing source.

Another issue involves what actions
TacAir-Soar should take in order to gain
new information about a participant. In
the older version of the system this was
a simple matter because there was only
a radar information source. If the sys-
tem did not have radar contact, it did
what it could to achieve a radar contact.
Now, however, there are many different
information sources and different ways to
achieve them. In addition, some sources
are better than others in different sit-
uations. For example, radar is good at
accurately tracking altitudes and head-
ings at a distance, but rapid visual infor-
mation is necessary as the engagement
progresses.

For example, if TacAir-Soar only has
recorded information about an agent, the
system might request some communi-
cated information in order to achieve a
better idea of what the agent is doing.
Communicated information is useful (par-
ticularly at long ranges), but it is some-

what inaccurate and takes a while to re-
port. Thus, the system still does what

it can to get a radar or visual contact in
order to get faster, more reliable informa-
tion. The point here is that TacAir-Soar
not only requires knowledge for managing
information from multiple sources, but

it also must have the knowledge to seek
out different types of information contacts
when appropriate.

Identifying and tracking multiple
participants

In the tactical air domain, there are
generally a number of participants in
each engagement. A particular simu-
lated agent will probably have a section
partner, and there may be any number
of other friendly and hostile participants
that the agent must worry about. The
major difficulty arises in creating a map-
ping between the participants that “are
really out there” and the participants
that the agent is currently receiving in-
formation about (from at least one of the
information sources). Thus, much of our
research effort has been on finding an ef-
ficient, accurate, and realistic method to
maintain this mapping.

The problem can be summarized as fol-
lows. The agent may have a mental rep-
resentation of a number of other partic-
ipants in the current simulation (we will
refer to these as mental agents). Now the
agent receives a new contact (i.e., new
visual, radar, or communicated informa-
tion becomes available). The agent must
now decide whether this new contact cor-
responds to one of the mental agents, or
whether this is a new participant (requir-
ing the creation of a new mental agent).
If the contact corresponds to one of the

existing mental agents, TacAir-Soar must
decide which mental agent the informa-
tion pertains to. Only alter this map-
ping has been completed can the system
correctly interpret and respond to the
new information. This should be done as
quickly as possible, but it should also be
done with the same intelligence and flex-
ibility that human pilots have. It can be
disastrous, for example, to conclude by
mistake that a hostile participant is the
agent’s section partner.

A similar problem arises in the case
where two agents must communicate with
each other about other participants in
the engagement. For example, the lead
agent of a flight section may need to tell
its partner which bogey it is targeting.
However, the two agents will not neces-
sarily have the same mental agents repre-
sented, and often they will not even have
the same information coming in on their
sensors. The solution for this is for the
lead to describe particular characteris-
tics of the bogey, so the partner can use
this information to determine which men-
tal agent the lead is talking about. In
TacAir-Soar, the problem of communicat-
ing about other engagement participants
is subsumed by the general problem of
identifying and sorting incoming informa-
tion (regardless of the particular infor-
mation source) to the appropriate mental
agent.

TacAir-Soar solves this problem by pass-
ing new information through a set of fil-
ters. The first filter determines whether
the new information closely matches any
existing contact information for a men-
tal agent (e.g., the system might achieve
radar contact with an agent for which
it had only previously received commu-

nicated information). If this filter fails
to identify a unique mental agent, the
next filter compares any new position
information to the last position informa-
tion the system recorded for each mental
agent. TacAir-Soar uses a form of tem-
poral reasoning, based on the time of the
last recorded position for each mental
agent, together with the contact’s head-
ing, speed, etc., to determine which men-
tal agents the new contact information
could possibly pertain to.

This filter may rule out any existing
mental agents, in which case TacAir-Soar
will create a new one. On the other hand,
the filter may provide a unique mental
agent to assign the new contact infor-
mation to. Otherwise, there is still some
ambiguity so the system must use its final
filter. This filter compares individual fea-
tures in the new contact information to
the same features in each remaining can-
didate mental agent. The mental agents
that are closest in value for a chosen fea-
ture are saved, while others are elimi-
nated from consideration. This process
continues through a set of features un-
til 2 unique mental agent remains. Cur-
rently, the features that TacAir-Soar ex-
amines are magnetic bearing, range, alti-
tude, speed, and heading. If, after sort-
ing through all of these features, there
is still more than one candidate mental
agent, the system simply chooses one at
random. However, this is rare unless two
contacts appear in almost the same posi-
tion, in which case further discrimination
is probably meaningless anyway.

This filtering mechanism is based on
the methods that real Navy pilots and
RIOs use to identify contacts, and it has
proved relatively robust in allowing the

e

TacAir-Soar agent to reason about mul-
tiple participants in a simulated engage-
ment. However, there are times when the
current mechanism fails, indicating that
there is some knowledge missing from
the process. For example, human pilots
generally begin a mission with an idea of
where the friendly and enemy forces are,
and this helps them identify initial con-
tacts. Additional information sources,
such as IFF, can also be used to help
identify and sort contacts. Within visual
range, pilots can use the actual shapes
of different vehicle types to determine
who is wk » far TacAir-Soar does not
use these & . ..tional types of knowledge,
and so it is prone to getting confused in
some situations where humans do not
have difficulties maintaining situational
awareness. TacAir-Soar can also become
confused when engagements becorne fast
and close, so it does not have time to sort
and process all of the incoming informa-
tion properly. However, this is the type
of situation that is difficult even for hu-
man experts.

Summary

Maintaining situational awareness is a
particularly important part of tactical
behavior, and simulated tactical agents
must address the issues involved. We
have identified two important compo-
nents of maintaining situational aware-
ness: managing knowledge about multiple
tactical participants in an engagement,
and managing incoming information from
a variety of sources. In addition, we have
implemented knowledge and behaviors
that address these issues into the TacAir-
Soar system.

In order to reason about multiple infor-

mation sources, the system has mech-
anisms for choosing between existing
sources, as well as methods for generat-
ing behavior so that the agent can ac-
quire new information (such as searching
for radar contacts or moving into visual
range). Reasoning about multiple partici-
pants requires the agent to form a mental
picture of its situation, including a men-
tal representation of each participant in
the engagement. As new information is
acquired, the system uses heuristics to
determine to which mental agent each
new contact pertains. In addition, the
agent performs these tasks within the dy-
namic constraints of the domain, so it is
possible for it to get confused in the same
types of situations as humans.

Our continuing work will focus on the
addition of new information sources such
as IFF and radar-warning receivers. To-
gether with these devices, the agent will
require the knowledge to gather and man-
age the types of information these devices
provide in the appropriate situations. In
addition, we are continuing to study how
human pilots maintain knowledge about
other participants in an engagement, so
that we can improve the mechanisms for
identifying and sorting contacts into men-
tal agent representations. As this knowl-
edge improves, we expect to develop gen-
eral intelligent methods for maintaining
situational awareness, so the agent can
generate even more realistic and appro-

‘priate behavior.

Acknowledgements

This research has benefited from the au-
thors’ interactions with all of the mem-
bers of the Soar-IFOR group at the Uni-
versity of Michigan, University of South-

42

ern California, and Carnegie Mellon Uni-
versity. The members of BMH, Inc. have
proved invaluable as subject-matter ex-
perts. The research is supported by con-
tract N00014-02-K-2015 from the Ad-
vanced Systems Technology Office of the
Advanced Research Projects Agency and
the Naval Research Laboratory.

References

Jones, R. M., .ambe, M., Laird, J. E., &
Rosenbloom, P. S. (1993). Intelligent au-
tomated agents for flight training simula-
tors. In Proceedings of the Third Confer-
ence on Computer Generated Forces and
Behavioral Representation (pp. 33-42).
Orlando, FL.

Biographies

Randolph M. Jones received his Ph.D.
in Information and Computer Science
from the University of California, Irvine,
in 1989. He is currently an assistant re-
search scientist in the Artificial Intelli-
gence Laboratory at the University of
Michigan. His research interests lie in the
areas of intelligent agents, problem solv-
ing, machine learning, and psychological
modeling.

John E. Laird is an associate professor
of Electrical Engineering and Computer
Science and the director of the Artificial
Intelligence Laboratory at the University
of Michigan. He received his B.S. degree
in Computer and Communication Sci-
ences from the University of Michigan in
1975 and his M.S. and Ph.D. degrees in
Computer Science from Carnegie Mellon
University in 1978 and 1983, respectively.
His interests are centered on creating in-
tegrated intelligent agents (using the Soar

architecture), leading to research in prob-
lem solving, complex behavior represen-

" tation, machine learning, and cognitive

43

modeling.

W

Generating Behavior in Response to Interacting Goals

Randolph M. Jones,! John E. Laird,! Milind Tambe,? and Paul S. Rosenbloom?

1 Artificial Intelligence Laboratory
Usiversity of Michigan
1101 Beal Avenue
Ann Arbor, MI 48109-2110

Abstract

The domains that computer-generated
Jorces address (such as tactical flight) are
more complex than have generally been
used in artificial-intelligence research. A
particular characteristic of this complezity
is that a reasonable agent must attend to
a large number of goals at the same time.
Moreover, some of these goals are inde-
pendent, while others interact with each
other in a variety of ways. This research
focuses on a number of issues involved in
representing, reasoning about, and learn-
ing about such complez goal structures.
We discuss a number of approaches that
we have ezamined within the framework of
the TacAir-Soar system.

The Soar-IFOR. project aims to build
believable agents for tactical air simu-
lation. We have constructed a system,
called TacAir-Soar, that embodies a large
amount of knowledge for carrying out
tactical naval air missions (Jones, Tambe,
Laird, & Rosenbloom, 1993; Rosenbloom
et al., 1994). In the course of our re-
search, we have developed a large ontol-
ogy of the knowledge required to generate
human-like behavior in flight simulation.
This includes knowledge about mission
goals, doctrine, equipment specifications,
survival, situational awareness and inter-
pretation, cooperation, and other aspects
of the task. Although each of these types
of knowledge is relatively independent,
their impact on behavior is highly inter-
dependent.

2Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina Del Rey, CA 90292

This paper investigates various repre-
sentations for sets of interacting goals
that arise from such a complex know]-
edge base. We have identified five issues
that we wish to address in our examina-
tion of the candidate approaches. First,
it appears to be necessary to represent
agent goals as a forest of interacting goal
hierarchies. Second, existing goal-driven
systems are not designed for such a goal
representation, so we must find an ap-
propriate mapping between agent goals
and the types of goals that current ar-
chitectures for intelligence allow (e.g.,
we want the architecture to do as much
maintenance of goals as possible). Third,
the agent must reason about how well
different actions achieve combinations
of goals. Fourth, the ideal knowledge
representation should facilitate effective
learning within the architecture. Finally,
the representation should also allow the
knowledge base to be updated by subject-
matter experts and knowledge engineers
with a minimum of effort.

An example from the tactical flight
domain

To illustrate this complexity of knowl-
edge, consider a situation where an F14
pilot has just launched a medium-range,
radar-guided missile. At this point, the
pilot has a number of active goals, such
as surviving, accomplishing a specified
mission, destroying the target, achieving
another missile shot, maintaining situ-
ational awareness, and supporting the
launched missile. A subset of these goals

appears in Figure 1. Some of these goals
have a direct hierarchical relationship
(e.g., intercepting a target and achiev-
ing proximity to it), while others are rel-
atively independent of each other (e.g.,
achieving proximity to a target and em-
ploying weapons). In response to this
host of goals, there are a number of can-
didate actions the pilot could consider.
However, these goals constrain and some-
times even conflict with each other, so

it does not always suffice for the pilot

to select an action that addresses only a
subset of his or her goals.

In this case, the pilot may wish to de-
crease closing velocity to the target in or-
der to increase chances of survival and to
achieve another missile shot. One possi-
ble action would be to turn away from
the target, but this would violate the
goals of maintaining a radar lock and
supporting the launched missile because
the pilot’s radar would no longer be il-
luminating the target. Another option
would be to reduce speed by reducing
thrust. This has the tradeoff of reducing
the F14’s energy, which could become im-
portant later in the engagement. Other
possible actions would be to reduce speed
by gaining altitude, or reduce closing
velocity by turning part way away from
the target (as in an “f-pole” maneuver).
The amount of altitude change or f-pole
turn would depend on other aspects of
the current situation, such as the gimbal
limits of the radar.

Issues for constructing an intelli-
gent agent

Our approach to simulation is to apply
state-of-the-art artificial-intelligence (AI)
technology to create individual intelligent

45

participants for simulated engagements.
Unfortunately, existing Al systems that
generate behavior are not well suited to
the demands of knowledge-rich tasks with
interacting goals. In general, Al systems
only focus on one goal at a time, or at
best allow a single hierarchy of simulta-
neous goals. However, some of the goals
in the current domain are hierarchical in
nature, while others clearly are not. Even
the non-hierarchical goals interact and
must be taken into account when generat-
ing behavior. In essence, it appears that
the best representation of goal knowledge
for this domain consists of a set of inter-
acting goal hierarchies.

This is not to say there has been no re-
search on planning to address unordered
interacting goals. For example, Chapman
(1987) presents a complete and correct
planning method for arbitrary goal com-
binations, but it works in restricted do-
mains, and it relies on search-intensive
planning, rather than real-time behavior
generation. Cohen, Greenberg, Hart, and
Howe (1989) and Veloso (1989) have sug-
gested methods for conjunctive goal plan-
ning in real time by storing preplanned
episodes or using intelligent heuristic
search. These are alternatives to the ap-
proach presented here, and we plan to
examine the tradeoffs between various
approaches in the future.

Rather than committing to a single po-
tential solution, we are evaluating a aum-
ber of different approaches both to the
representation of goals within an agent,
and its mechanisms for reasoning about
interactions between goals. All of our ef-
forts have been developed with variations
of the TacAir-Soar agent (Jones et al.,
1993; Rosenbloom et al., 1994), which is

Intercept| Evade Missile
Achieve Employ
Proximity Weapons
_— —~
Support Decrease
}gsile Closure
Maintain
yr Lock

Tuarn Turn Turn

Toward Away From Perpendicular

Target Target to Target

\

Achieve Heading

/

Figure 1. A subset of concurrent, interacting goals it_x the tactical air domain.

46

implemented within the Soar architecture
for cognition (Rosenbloom, Laird, Newell,
& McCarl, 1991).

Mapping agent goals to architectural
goals

As the previous section illustrated, agent
goals are best represented as a set of goal
hierarchies. However, traditional Al sys-
tems do not encourage this type of rep-
resentation. For example, architectures
such as Soar, Prodigy (Minton et al,
1989), and Theo (Mitchell et al., 1991)
make goals a first-class object type, and
they include specific mechanisms for rep-
resenting, posting, and learning about
goals. But these goals can only be ex-
pressed easily in a single stack or hierar-
chy. To overcome this limitation, alter-
native goal representations can be used,
such as encoding goals as part of the
agent’s current state description. How-
ever, this type of representation precludes
using many of the mechanisms the archi-
tecture provides directly to support goals.
Thus, we are left with the question of
how the agent goals we wish to represent
can or should be mapped to architectural
goals that the overall system supports.

The initial design of TacAir-Soar takes a
mixed approach to the mapping between
agent and architectural goals. Some of
the agent goals are represented explic-
itly as architectural goals, whereas others
appear as implicit goals in the agent’s sit-
uation representation. The explicit goals
map directly onto Soar’s goal stack, and
they benefit from Soar’s goal maintenance
and learning mechanisms. In contrast,
implicit goals are recorded along with
other descriptions of the agent’s current
state, such as it’s vehicle type, current

47

speed, missile status, etc. Some implicit
goals (e.g., survival) are not represented
at all, and are simply assumed to exist,
and the behavior-generation rules take
them into account even though they are
not represented explicitly. In the above
example, survival, maintaining situational
awareness, and decreasing closure are im-
plicit goals, whereas destroying the target
and supporting the missile are mapped to
architectural goals. In many ways, this is
an ad hoc solution, but it allows the sys-
tem to generate reasonable behavior by
using architectural mechanisms to sup- .
port the explicit goals while still allow-
ing the implicit goals to modify behavior
when appropriate. Thus, this represen-
tation works well for generating behav-
ior, but difficulties arise when the sys-
tem must learn to adapt that behavior.
For example, there is no easy way for the
system to detect that maintaining situa-
tional awareness sometimes conflicts with
evading a missile.

In response to this problem, we have
investigated two alternative approaches
to mapping goals. In one approach, all
agent goals are mapped into the archi-
tectural goal hierarchy, collapsing the
agent’s forest of goals into a single stack.
The alternative approach is to map none
of the agent goals into the architectural
goal hierarchy. In this case, all reason-
ing takes place in the service of a single
architectural goal, and all other goals ap-
pear as descriptions of the agent’s cur-
rent situation. There are a number of
tradeoffs between these two approaches
involving the automatic mechanisms for
maintaining a goal stack and learning,
and the flexibility of the representation of
goals and knowledge about goals in terms
of expressive power and ease of mainte-

nance. For example, when mapping all
agent goals to architectural goals, the
current forest of goals must be collapsed
into a single hierarchy. This new hier-
archy dynamically imposes a syntactic
parent-child relationship on some goals
even when such a relationship does not
exist semantically. For example, evad-
ing a missile might be assigned as a child
of employing weapons, even though the
goals do not really depend on each other.

This resulting hierarchy represents a
single total ordering on the normally
partially ordered goals, which can lead
to difficulties in maintaining the goal
stack. In the above example, if the goal
to employ weapons goes away, the goal
to evade a missile will also be popped
from the stack, because it was arbitrar-
ily set up as a child of the goal to employ
weapons. On the other hand, because
all of the goals are mapped to architec-
tural goals, this version of the system can
take better advantage of built in mech-
anisms for detecting and implementing
learning opportunities. The architectures
for intelligence that we have mentioned
generally learn about relationships across
architectural goals, but not within archi-
tectural goals. If all the reasoning takes
place within a single architectural goal,
no learning can take place. ’

Our experiences with various represen-
tations for goals have also led us to con-
sider alternatives for expanding archi-
tectures such as Soar, so that it can ex-
plicitly represent sets of goal hierarchies
rather than just a single hierarchy. If this
effort is successful, it should provide us
with all of the advantages of both of the
extreme approaches mentioned above, be-
cause all agent goals would map directly

to architectural goals in a simple manner.

Reasoning about interactions

In addition to an appropriate represen-
tation for goals, the agent must contain
mechanisms for reasoning about the way
goals influence each other. There are two
general cases that we consider here. Two
goals tnteract when they can be achieved
or maintained concurrently, but they each
constrain the behaviors that are appropri-
ate. For example, in Figure 1, the agent
can reduce closing velocity to its target
while maintaining a radar lock by turn-
ing just until the target is on the edge of
the radar. Different behaviors would be
appropriate if these goals were being ad-
dressed independently. In contrast, some
goals are simply impossible to achieve or
maintain at the same time. In this case,
we say the goals conflict with each other.
Again referring to Figure 1, the agent
cannot always maintain a radar lock if
it is busy evading a missile. Thus one or
the other goal must be susperded tem-
porarily or ignored completely.

Each of the system variations we have
explored addresses goal interactions and
conflicts. In one of our approaches, in-

- teractions between goals are represented

implicitly within the proposal condi-
tions for actions. For example, an agent
might propose the action of maintain-
ing radar lock on a target unless there

is an incoming threat that needs to be
evaded. An alternative approach involves
explicitly representing the interaction
between goals, so the agent can reason
about when to suspend goals or attend
to multiple goals. In this case, the agent
proposes the goals of maintaining radar
lock and evading a missile independently,

48

l

and separate reasoring determines which
set of actions addresses these goals in the
best way. For example, the agent may de-
cide to evade because survival is a high-
priority goal.

The agent currently makes these deci-
sions with built-in arbitration knowl-
edge about which goals interact with
each other. However, a final important
issue concerns how the agent would learn
such knowledge with experience. We see
a number of advantages from the ability
to identify and learn about goal interac-
tions and conflicts. If the agent finds it-
self in an unexpected situation, it should
have the flexibility to generate reasonable
behavior by evaluating the effects of dif-
ferent actions in light of the current set
of goals. In addition, the knowledge ac-
quisition task can be made easier if an
agent programmer does not have to an-
ticipate all the interactions and conflicts
that may arise when new goals are added.
Finally, if the system can detect interac-
tions that human experts have not en-
countered (e.g., when testing new types
of technology), the system may be able to
discover new tactics for satisfying partic-
ular sets of goals.

Currently, none of our agent implemen-
tations detect or learn about goal inter-
actions on their own. However, in devel-
oping alternative framewciks and goal
representations, we have icentified some
approaches that may be useful in sup-
plementing TacAir-Soar with this abil-
ity. As an example, suppose the system
knows about the goals to evade threats
and to maintain radar lock, but it has no
knowledge about how these goals con-
flict. The system’s first task is to detect
the conflict. This occurs when it proposes

actions to come to two different head-
ings. This will cause an impasse in the
Soar architecture, which identifies an op-
portunity to learn. Next, the system can
plan by predicting outcomes of various
actions, thus deciding which goals are
more important to achieve, and which
can be suspended temporarily. For exam-
ple, the system may discover by mental
simulation that it will be destroyed if it
does not evade an incoming threat. Thus,
the goal to evade should take precedence.
In other situations, it may be more im-
portant to maintain the radar lock (e.g.,
the agent may have launched its own mis-
sile). Goal interactions will be handled in
a manner similar to goal conflicts, except
the system will have to be supplemented
with extra evaluation knowledge so that
it can appropriately measure the partial
satisfaction of multiple goals.

Summary

There are a number of important issues
involved in handling interacting and con-
flicting goals to generate reasonable be-
havior in a complex domain. Perhaps
foremost are the facts that an intelli-
gent system must be able to represent
and reason about multiple concurrent
goal hierarchies, and traditional goal rep-
resentations in existing Al systems are
inadequate. Given an appropriate goal
representation, an agent must also be
able to reason effectively about the pos-

_sible interactions and conflicts between

goals, producing the best behavior given
all the various constraints. Finally, intel-
ligent agents must eventually be able to
acquire knowledge about interactions and
conflicts automatically, so that the agent
can behave flexibly and knowledge from

49

subject-matter experts can be encoded
without getting lost in tiny details.

We have experimented with a variety of
representations for concurrent goal hier-
archies, and attempted to fit these rep-
resentations nicely into an existing Al
architecture. We have been successful in
this effort, but we have also discovered
possible opportunities for improving the
architecture itself. Although we have not
yet solved all the problems with detecting
and learning about goal interactions, our
efforts so far have helped us identify how
and where learning might occur within
the existing TacAir-Soar system. Qur
current efforts involve refining our evalu-
ation of the best representation for goals
and implementing our ideas for learning.
In addition, other researchers have in-
vestigated the issue of real-time planning
for interacting goals (Cohen et al., 1989;
Veloso, 1989). Although this work makes
slightly different assumptions about the
demands of the domain and real-time be-
havior generation, we hope to evaluate
some of their ideas in the context of the
TacAir-Soar system.

Acknowledgements

This research has benefited from the au-
thors’ interactions with all of the mem-
bers of the Soar-IFOR group at the Uni-
versity of Michigan, University of South-
ern California, and Caruegie Mellon Uni-

versity. The members of BMH, Inc. have .

proved invaluable as subject-matter ex-
perts. The research is supported by con-
tract N00014-02-K-2015 from the Ad-
vanced Systems Technology Office of the
Advanced Research Projects Agency and
the Naval Research Laboratory.

References

Chapman, D. (1987). Planning for con-
junctive goals. In Artificial Intelligence,
82, 333-3717.

- Cohen, P. R., Greenberg, M. L., Hart, D.

50

M., & Howe, A. E. (1989). Understand-
ing the design requirements for agents
in complex environments. Al magazine,

10(3), 32-48.

Jones, R. M., Tambe, M., Laird, J. E., &
Rosenbloom, P. S. (1993). Intelligent au-
tomated agents for flight training simula-
tors. In Proceedings of the Third Confer-
ence on Computer Generated Forces and
Behavioral Representation (pp. 33-42).
Orlando, FL.

Minton, S., Knoblock, C. A., Kuokka, D.
R., Gil, Y., & Carbonell, J. G. (1989).
Prodigy 2.0: The manual and tutorial.
Technical report no. CMU-CS-89-146,
School of Computer Science, Carnegie
Mellon University.

Mitchell, T. M., Allen, J., Chalasani,
P., Cheng, J., Etzioni, O., Ringuette,
M., & Schlimmer, J. (1991). Theo: A
framework for self-improving systems.
In K. VanLehn (Ed.), Architectures for
intelligence: The 22nd Carnegie Mellon
Symposium on Cognition. Hillsdale, NJ:
Lawrence Erlbaum.

Rosenbloom, P. S., Johnson, W. L., Jones,
R. M., Koss, F., Laird, J. E., Lehman,

J. F., Rubinoff, R., Schwamb, K. B.,

& Tambe, M. (1994). Intelligent auto-
mated agents for tactical air simulation:
A progress report. In Proceedings of the
Fourth Conference on Computer Gener-
ated Forces and Behavioral Representa-
tion. Orlando, FL.

Rosenbloom, P. S., Laird, J. E., Newell,

A., & McCarl, R. (1991). A preliminary
analysis of the Soar architecture as a ba-
sis for general intelligence. Artificial In-
telligence, 47, 289-325.

Veloso, M. M. (1989). Nonlinear prob-
lem solving using intelligent casual com-
mitment. Technical Report no. CMU-
CS-89-210, School of Computer Science,
Carnegie Mellon University.

Biographies
Randolph M. Jones received his Ph.D.

in Information and Computer Science
from the University of California, Irvine,
in 1989. He is currently an assistant re-
search scientist in the Artificial Intelli-
gence Laboratory at the University of
Michigan. His research interests lie in the
areas of intelligent agents, problem solv-
ing, machine learning, and psychological
modeling.

John E. Laird is an associate professor
of Electrical Engineering and Computer
Science and the director of the Artificial
Intelligence Laboratory at the University
of Michigan. He received his B.S. degree
in Computer and Communication Sci-
ences from the University of Michigan in
1975 and his M.S. and Ph.D. degrees in
Computer Science from Carnegie Mellon
University in 1978 and 1983, respectively.
His interests are centered on creating in-
tegrated intelligent agents (using the Soar
architecture), leading to research in prob-
lem solving, complex behavior represen-
tation, machine learning, and cognitive
modeling.

Milind Tambe is a computer scientist at
the Information Sciences Institute, Uni-

versity of Southern California (USC) and
a research assistant professor with the

S1

computer science department at USC.
He completed his undergraduate educa-
tion in computer science from the Birla
Institute of Technology and Science, Pi-
lani, India in 1986. He received his Ph.D.
in 1991 from the School of Computer
Science at Carnegie Mellon University,
where he continued as a research asso-
ciate until 1993. His interests are in the
areas of integrated Al systems, and ef-
ficiency and scalability of AI programs,
especially rule-based systems.

Paul S. Rosenbloom is an associate pro-
fessor of computer science at the Uni-
versity of Southern California and the
acting deputy director of the Intelligent
Systems Division at the Information Sci-
ences Institute. He received his B.S. de-
gree in mathematical sciences from Stan-
ford University in 1976 and his M.S. and
Ph.D. degrees in computer science from
Carnegie-Mellon University in 1978 and
1983, respectively. His research centers
on integrated intelligent systems (in par-
ticular, Soar), but also covers other ar-
eas such as machine learning, production
systems, planning, and cognitive model-
ing. He is a Councillor of the AAAI and
a past Chair of ACM SIGART.

Knowledge Acquisition and Knowledge Use in a Distributed IFOR Project

Frank Vincent Koss

Artificial Intelligence Laboratory

University of Michigan
1101 Beal Avenue

Ann Arbor, MI 28109-2110

koss€umich.edu

Abstract

A fundamental goal of the IFOR/WISSARD
project is the creation of autonomous, intelligent
agents that can participate in computer simula-
tions of battle for training and gaming purposes.
The creation of such an agent has many of the
same requirements as constructing an expert sys-
tem. In particular, the designers face the enor-
mous task of acquiring, encoding, and refining the
knowledge that defines the agent’s desired behav-
ior. The knowledge must be drawn from many
sources, e.g. subject matter experts (SMEs),
training manuals and other texts, observation, ex-
perimentation, etc. This is usually done by many
people whoee raw materials must then be repre-
sented as a coherent specification that designers
can use for constructing the agent, communicat-
ing among themselves, and, ultimately, describing
the causes and rationales for the agent’s behavior
to others. In any case, this is not a simple task,
but in the case of the TacAir-Soar project, the
difficulty is increased by the geographical distri-
bution of the project’s members.! Our solution to
this problem is an electronic, multi-layer hyper-
text document called the TacAir-Soar Description
Document (TDD) which is implemented within
the National Center for Supercomputing Appli-
cations’ (NCSA’s) Mosaic. This document allows
its viewers to obtain information about the do-
main in plain English, about the agent in terms
of its structures and behaviors, and about the ac-
tual code that implements the agent.

Introduction

The TacAir-Soar prbject requires information
from many sources. The sources used to date in-
clude interviews with SMEs, electronic mail mes-
sages, training manuals, telephone conversations,
and observation of fighter pilots during simulated
engagements. To be useful, all of this information

1For a description of the TacAir-Soar project, see
this volume, [Rosenbloom94).

Jill Fain Lehman
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

jetecs.cmu.edu

must be combined into a single, organized repos-
itory that can be accessed by all members of the
project at each of the three sites involved (Univer-
sity .of Michigan, University of Southern Califor-
nia/Information Sciences Institute, and Carnegie
Mellon University). Additionally, there needs to
be some way to show the influences of various
pieces of knowledge on the design and develop-
ment of the agents. Without this, there is no way
for SMEs to validate the relationship between the
domain knowledge they provide and the agent’s
behavior.

Given these requirements, the NCSA’s Mo-
saic system was chosen as the application within
which to create a document that would combine
domain knowledge with agent implementation in
a coherent manner that could be accessed across
the Internet. The TacAir-Soar Description Docu-
ment has three layers, corresponding to the three
levels of specification we use to discuss agent be-
havior. The top layer of the document reflects
the knowledge level, an English description of the
air-to-air combat domain. This is a level of spec-
ification that is concerned with the knowledge of
objects, actions, and relations in the domain in-
dependent of any particular computational imple-
mentation of that knowledge. Although the top
layer of the TDD presents a coherent view of the
domain by integrating across particular instances
of knowledge acquisition, information gathered
from any of the sources listed above (interviews,
electronic mail, etc.) is also linked? to the top
layer in its raw form to allow for traceability.

Items in the top layer of the TDD may also
have links into the next layer of the document
which describes the agent’s structures and behav-
iors at the level of the problem space computa-
tional model (PSCM). The PSCM-level is a de-
scription of the agent’s behavior in terms of an

2In a hypertext document, links are portions of
the text that are highlighted in some way and are as-
sociated with another document. If a link is selected,
the document to which it refers is displayed.

52

abstract model of the Soar architecture, indepen-
dent of the particular implementation of the ar-
chitecture in C. Each PSCM-level document links
to the symbol level representation of the agent, i.e.
to a matching Soar code file in the third layer of
the TDD. The code files in the third layer are the
actual files that are loaded when an agent is cre-
ated, so they are always current. Because the lay-
ers are linked, a user can work up or down through
the hierarchy. Working downward means begin-
ning with the description of a particular concept
and following it through the layers to its imple-
mentation. Working upward means moving from
the agent code through the layers to find the jus-
tification for a particular structure or behavior.

Platform and Justification

Mosaic is a hypermedia browser distributed by
the NCSA. It allows a user to view docu-
ments that contain plain text, formatted text,
PostScript, images and diagrams, audio, and dig-
itized video. When combined with servers that
use the HyperText Transport Protocol (HTTP)
[Berners-Lee92], Mosaic can be used to view doc-
uments that are located throughout the world on
machines that are connected to the Internet.

These features mean that Mosaic has many ad-
vantages. First, because it is already written and
has a large number of users world-wide, we do
not need to spend time developing or maintain-
ing our own tool. The large base of users also
means that tools that support the authoring of
documents, such as editors and translators, are
readily available. Second, Mosaic is in the public
domain so there is no monetary cost associated
with the TDD’s development or use. Third, Mo-
saic runs on many Unix workstations and on the
Macintosh, so all group participants are able to
access the documentation regardless of the ma-
chine they normally use. Fourth, through the
use of a server, all members can access the same
copies of the document at all times.3 Changes are
immediately accessible to all, reducing the chance
of out-of-date documentation causing confusion.
Finally, because of the multimedia capabilities,
we can include such items as diagrams for describ-
ing tactics and maneuvers, images of equipment,
and unmodified electronic mail messages. This
flexibility allows us to use the most appropriate
means to store and convey information.

The Knowledge Level

‘The top layer of the TDD describes the domain of
air-to-air combat at the knowledge-level, i.e. in-
dependent of any particular computational imple-

3 Anyone with
- access to Mosaic can view our documentation with
the URL http://krusty.cecs.umich.edu/ifor.

53

mentation of the domain. The information con-
tained in this layer is of a general nature and is ob-
tained from a number of sources. All source ma-
terial is kept and is referenced by the domain de-
scription to allow for traceability. Interviews with
pilots are videotaped whenever possible. (These
are turned into documents that are considered the
source of this information. The videotapes them-
selves are also kept.) Telephone interviews are
also turned into source documents. Electronic
mail messages are given a standard identifying
header. For information from manuals and books,
a bibliography-style entry is kept.

Knowledge from these disparate sources is or-
ganized into a coherent whole by the use of a
topical tree-like structure and an index by topic
area. Reorganizing the information in this way
has a number of benefits. Combining from mul-
tiple sources on the same topic quickly reveals
contradictions and missing or unclear informa-
tion. Further, as detail is added to specific topics,
the new information is near the older, more gen-
eral knowledge and so is easy to locate. Since all
of the organized documents are given similar for-
mats, they are easier to browse than the various
source documents. Finally, browsing the informa-
tion topically is generally the easiest method for
users.

The PSCM Level

The layer below the knowledge level gives a de-
scription of the agent’s behavior in terms of an
abstract model of the Soar architecture, indepen-
dent of the particular implementation of the ar-
chitecture in C. The PSCM is the basis of Soar
and is the common view shared by the project
participants. It is a view of problem solving be-
havior in which the agent pursues ‘ts goals by
applying operators to the current state thereby
deriving a new state in an iterative process until
the goal state is achieved. Thus, this level of de-
scription maps domain knowledge into the form
of goals, operators, and state information.* By
following links between the knowledge-level doc-
uments and those ‘at the PSCM level, the effect of
the knowledge on the structure of the agent can
be determined. In addition, areas of the agent
that would be affected by additiona! information
in a particular domain area can be found. Since
the PSCM is a specific instance of many ideas
that are common within Al this level of represen-
tation may be accessible to many subject matter
experts as well.

*An understanding of Soar and the PSCM can be
gained from [Newell90] and [Rosenbloom93].

The Symbol Level

There is a one-to-one mapping between the doc-
uments at the PSCM level and the Soar agent
code, the lowest layer of the TDD. These files
can be viewed to see how the definition of a prob-
lem space or operator was realized in code that
executes within the implementation of the archi-
tecture. Since the PSCM is an abstraction, design
choices at that level may have many realizations
in the code. By separating the code level into
its own layer, we also separate the general con-
straints on that realization (e.g. that it should be
an operator rather than state) from the realiza-
tion itself. By linking the two layers we maintain
a record of the origin of our coding choices.

Example of Use

Figure 1 shows the root of documents which make
up the knowledge level. Underlined words and
phrases indicate links to other documents. The
links Geom%g through Communpication connect
to parts of the knowledge-level document hierar-
chy that cover those
topics. TacAir-Soar Goal/Operator Hierarchy
links to the root document of the PSCM level.
Tom Brandt at UM, July 23, 1993 (2vN) links to
a source document that was created from a video-
taped interview.

Following a piece of the topical organization
downward, figure 2 shows the document that is
linked to by the Geometry link of figure 1. This
document, still part of the knowledge level, has a
figure that shows the terms used to describe the
geometry of two aircraft. The link Target Aspect
then leads to the document in figure 3, WEE?:E
gives a narrative description of target aspect.
This description ends with a link that goes to
a knowledge level document that covers the re-
lated topic of lateral separation. Below the de-
scription of target aspect are links to other rel-
evant knowledge-level concepts, as well as a link
to the source for this document’s information.

At the bottom of figure 3 there are links to
the three documents in the PSCM level of the
TDD that involve target aspect. Following one
of these, Cut-to-ta, leads to the document in fig-
ure 4, which describes the operator that ic used
to cause the agent to turn its aircraft in order to
achieve a desired target aspect. Finally, following
the link /top-pe/. .. /eut-to-ta.soar into the sym-
bol level of the TDD displays the Soar produc-
tions that implement the PSCM-level operator,
as shown in figure 5.

Conclusions

Initial knowledge acquisition results in changes
to the domain level of the document. This infor-
mation is in a form that both project members

_Novigate Anaolate
Oocument Tiie: {Oomatn Sescription Oecument 1

Document URL: [nttp: /Aurusty. eecs .unich.edu/{for /600 Mmonspag |

Domain Description Document

‘This s the 300t of ¥ Do igrion O for e flight combe domiin. The
et Selow giwas the basic Cetagories Koy eround which the Inioramtion is arganined. i
Clicking o eny of the wndertined ensriss witl scoms the relevarst tree.

” Notes on specific tedge ecq ouni
@ Tom Beandt o UM, My 23, 1993 2w)
e

{ind e o Jou ere looking for. ry the

(BocH)(Foreaws o] Anioad}{Gpan][Save As}{Gione]fiow Windou]{Gis Vo]

Figure 1: Root of the Knowledge Documentation.

Fle Novigate Anustate

Oosument Thte: | Coomeery 1
Oocument URL: [mttp://urusty. encs. urich.. e/ for /D00/geometrynede. |

Figure 2: The Geometry Knowledge Document.

54

Ll _Opisns Nevigeic Annstete

Domument Tiie: [Uncitied, WH WP //Arusty. oucs i ch . adu/s For XX | S

JSEe .u-lullo—lu *state <37}

Sngaie _Aanctar Oooument URL: |ty .//hrwsty.oecs .umich.atu/ifor 00 tecaie frep-ge]
Cosumnont Tis: | Target Ampect J l : -.tnno-un R -40-C8. 000
Dot URL: [itep:/ Arusty. eocs . et/ for 00/t ek
l 4! serich for.] I ;mnwo—mmum-.ummnn-d.
: wa aced to l--“u umhthoﬂm-uluunlu-.
3 latersl is grestec than ¢
Target Aspect (op 9ot miee !o-lu‘m-m cout o-te I

o-iafe cm> “hegey <>
Turget aspest s O agle Som U awey’s ML puh 0 whare his line of sight B0 :::: Muinl-h—o‘l-u npp
e fighver, This angle & sy such related © e abitity 0 employ missttes end eleo & :!;-‘:::'«-oﬂ-d *no" “desired-ta-ceasom too-fer
ed 8o culcuiess Jgberel pereifon . SLcwo> cange © short *les-ethiovable -lar-echieved)
® Raletion 0 ows mbvethe fmch scecesbiiey rerion, | 7 tco> suppestpeoposat
© More enelt en LAR o TA ! , (8 T ey ' al)
© Reletiog % guay's pigils

(op get-missile-lersprop
© Sowes pueriel "-l:p “problen-space.neme gat-uiseile-ler “state <ad) ,
Supumode Qeapmy (<p> “mame Ost-to—ta “bogey ®>)

v » hg >
.&: s (cdn> *“desirved-heading <he>)
]
e (sp ’u-sulh-l-“-. < d
(gosl <g>
(c» “mens out:

*prodblen-epece.sane ~aissile-lar “state
Lo) M-ltd-::-nr <dn>)

Figure 5: The Soar productions for cut-to-ta.

Figure 3: The Target Aspect Knowledge Docu-
ment.

and non-project members can access and eval-
uate. Designers can then decide how to realize
the new information within the agent. This dis-
cussion tends to take place at the abstract level
of the PSCM, and is subsequently recorded as
T additions or changes to the PSCM layer. Once

the PSCM design is complete, coding can begin.

e | e J sll If there are decisions that cannot be made un-
B

Dooumant RS [:7/Arvety ovce .wwioh sty for A0S/ vacate oop9e] ambiguously at the symbol level, pointers back

Operator: Cut-to-ta through the PSCM can help direct attention to
Seporgeet other parts of the code that may be relevant.
* gt-ninte-w

The system we have described has proven to

Opesior Overvtew: work well. Both project members and domain

Opdmtmp e —oen experts are able to access the information. The
e P o 0.5, we e b e - i LS position. ability to include images and diagrams has proven
Iterel-euparetion is greser han 0.

to be very useful.

Applisation:
Tunloh £ “begey.redar-info.target - t.value < 0, o . . o
gt i>e O .o unted wrv-rame. srpect.Tatee There are a number of limitations which need

Operster Rotindder: * to be explored in more detail. The question
Wi apirsior propas a0 longr bokde of centralized vs. de-centralized control of the
document has become increasingly important, as
is usual for any dynamically changing resource.
Centralized control has thus far ensured that all
have access to consistent information. However,
this has proven to be a bottleneck in the pro-
cess of adding new information. Also at issue are
the possible roles of digital libraries in expanding
Figure 4: The Cut-to-ta PSCM document. the type of information that can be included in

the “document” (e.g. video of experiments rather

than just transcriptions) and of the Internet in

making such a document more widely available.

35

—

Acknowledgements

This research was supported under subcontract to
Carnegie Mellon University from the University
of Michigan and at the University of Michigan
as part of contract N00014-92-K-2015 from the
Advanced Systems Technology Office (ASTO) of
the Advanced Research Projects Agency (ARPA)
and the Naval Research Laboratory (NRL). Crit-
ical support has been provided by Tom Brandt,
Bob Richards, and Ed Harvey of BMH Inc.

References

[Berners-Lee92] Berners-Lee, T.J, Cailliau, R.,
and Groff, J.F., The World-Wide Web, Computer
Networks and ISDN Systems 25 (1992) 454-459.
Noth-Holland.

[Newell90] Newell, A., Unified Theories of Cogni-
tion, Harvard Press, Cambridge, MA, 1990.

{Rosenbloom93] Rosenbloom, P. S., Laird, J. E.,
and Newell, A., The Soar Papers: Research on
Integrated Intelligence, MIT Press, Cambridge,
MA, 1993.

[Rosenbloom94] Rosenbloom, P. S., Johnson, W.
L., Jones, R. M., Koss, F., Laird, J. E. Lehman,
J. F., Rubinoff, R., Schwamb, K. B., and Tambe,
M., Intelligent automated agents for tactical air
simulation: a progress report. In Proceedings of
the Fourth Conference on Computer Generated
Forces and Behavioral Representation, 1994.

Biographies

Frank V. Koss is a systems research programmer
in the Artificial Intelligence Laboratory at the
University of Michigan, where he is developing
the interface between the Soar architecture and
the ModSAF simulator. He received his BS in
computer engineering from Carnegie Mellon Uni-
versity in 1991 and his MSE in computer science
and engineering from the University of Michigan
in 1993. He is 2 member of IEEE and AAAI

Jill Fain Lehman is a research computer scien-
tist in Carnegie Mellon’s School of Computer Sci-
ence. She received her B.S. from Yale in 1981,
and her M.S. and Ph.D. from Carnegie Mellon in
1987 and 1989, respeetively. Her research inter-
ests span the area of natural language processing:
comprehension and generation, models of linguis-
tic performance, and machine learning techniques
for language acquisition. Her main project is NL-
Soar, the natural language effort within the Soar
project.

56

Coordinated Behavior of Computer Generated
Forces in TacAir-Soar

John E. Laird, Randolph M. Jones, and Paul E. Nielsen
Artificial Intelligence Laboratory
University of Michigan
1101 Beal Ave.
Ann Arbor, MI 48109-2110
laird@umich.edu

generated forces is to populate simulated battle-
flelds with automated intelligent agents' which
behave as humans would on a real battlefield. Al-

sions and supporting actions, or bringing to bear
fire power that no single agent has alone. The
problem is how to get many different agents, in

}Throughout this paper we will use the term sgent

to refer to a single computer-generated entity, such as
a pilot of a fighter plane.

different physical locations, with different models
of the environment, with different physical abil-
ities, and poesibly different short-term goals, to

~ work together to achieve the most effective re-

sults.

In the past, computer-generated forces have
taken one of three approaches:

1. No coordination

Many computer generated forces do not at-
tempt to coordinate their behavior with any
other forces. They have a specific mission that
they are to execute, and they execute the mis-
sion independent of other friendly forces. In
many semi-automated forces (SAFORs), it is
left for an overseeing human to organize their
man *“micro- the individual units, and
in the heat of battle, the human can become
overloaded.

2, Centralized control
When tight coordination of behavior of a small
unit is required, the common approach is to
treat the aggregation as a single unit in terms
of behavior. For example, individual tanks
may be represented on the battlefield, but their
behavior is organized into platoons and com-
panies. Instead of atteinpting to represent the
communication and coordination of the indi.
vidual tanks, behavior is generated for the pla-
toon (or company) as a whole and then spe-
cialized for the individual unit (a tank). Each
unit does not independently reason 2bout its
behavior and there is no explicit communica-
tion between units.
3. Explicit corainand and control
In a limited number of cases, computer-
forces have generated explicit orders
to lower-echelon forces, as in Eagle II [Powell
and Hutchinson, 1993]. However, this did not
ﬁmml-thnehuendionbmindepm-
units.

The conclusion is that only limited progress
has been made in creating agents that coordinate

their behavior in flexible ways. Unfortunately,
solving the general problem of dynamically orga-
nizing multiple agents to maximize their coordi-
nation is an intractable problem. However, to cre-
ate coordinated automated forces does not require
a complete solution to this problem. We can limit
ourselves to modeling the methods and practices
currently used by military organizations. Within
the military, the command structure is a rel-
atively static hierarchy, where preplanning and
training are used extensively to avoid the com-
plexitis,ddwl,oomnmmatmndimaﬂtiu, and
possible confusion that can arise with dynamic
reorganization or retasking of the participants.
Also, much of the behavior is determined by pre-
deﬂnedtact:eaanddocttine,wh;dx reduces the
need for communication. This is not to say that
such reorganizations and retaskings are not poe-
sible, it is just that they are held to a minimum,
and are based on well defined procedures.

Thus, our goal is not to develop new forms of
coordination and communication for the military
(they have been working on this for thousands of
years), but instead to create computer-generated
foreeathatmnpartxcxpatem coordinated behav-
ior within the limits (and breadth) of a military
organization. Our goal is to identify the types
ofeoordmatxonandeomnmmmtxonthatlmutbe
supported by an intelligent agent and then exam-
ine how this impacts on the design of computer
generated forces.

Omappmachstartsthh individual units that

reason about their own behavior

a.ndeootdinatetheubebamuusmgexphateom-
munication as well as shared tactics and doctrine.
We plan on using explicit command and control,
but with the intent that it is ubiquitous and used
more flexibly and robustly than has been demon-
strated to date. Some of the advantages of this
approach are as follows:

1. Coordinated behavior will be more realistic.
Coordination based on communication will be
exphat,mmetnmetotnnmt and inter-
pret,beopmtoms-inta-p retation, jamming,

Coordination based on shared doctrine
andtactiawillobeydocmne,butxtwmaln
fail when the doctrine fails. In addition, by in-
dependently modeling each entity (instead of
a group as a whole), it should make it easier

- to model doctrine where the individual unit or
subgroup is expected to have initiative.

2. Coordinated behavior should scale up to higher
levels of command. Instead of trying to cre-
ate larger and larger aggregate forces that are
centrally controlled, commanding agents are
created (such as platoon, company, battal-
ion commanders) whose purpose is to generate
commands for lower levels and report back to

higher levels.
3. Coordinated behavior should be easier for hu-

mans to understand because there will be ex-
plicit communication that can be obeerved.
4. Coordinated behavior between buman and
eomputcgmantedfotwwinbepodble.
Inthhpapa,wereportontheﬁntwepolt
coodimedbdnvmmthnmtomatedfotcuby
examining our implementation of the coordina-
tionuquiredfortwplanu flying tactical air
missions as a section. Of necessity, we have
been studying low-level real-time coordination
that arises during the execution of a specific mis-
sion. We have not studied the longer term coor-
dination that is required at higher levels of the
command hierarchy such as managing an air or
groundeampu@.
is to treat our work as a case
ltudy We start by analyzing the coordination
required for flying two planes in a section in our
current implementation. Next we study the vari-
ous methods that computer generated forces can
use to obtain the knowledge required to coordi-
nate their behavior. This leads to the main point

’ ofthepapu-wh;dlutondentxfyhoweoordmatwn

impacts the design of computer generated forces.

Example Scenario

Themwronmentmwhndnweuestudymgeo—
ordination is tactical air combat, as part of the
Soar/IFOR component of WISSARD. The agents
wemmoddingmdudeﬁghta‘planes,sudxui‘-
14’s and MiG-29’s, and air intercept controllers
(AIC) in AWACS-like planes such as the E-2C.
Our IFOR agents are built in TacAir-Soar [Rosen-
bloom et al., 1994] within the Soar architecture
[Laird etd. 1987] and interact with the DIS
world through ModSAF [Calder et ol 1993).
Each agent is ind utuatedmxtoown
vehicle (such as an F-14, pnMiG-29 or an E-2C),
and is restricted to perceiving what is available
onntaownvehldesmou. Ourngmtsoommu—
nicate via radio messages that approximate the

plunmtion,ouragentquformmmemepts
(as either red or blue, or both).

Consider the scenario in Figure 1 in which two
blue fighter planes (F-14's) are flying together as
a section in a combat-air patrol (CAP) protect-
ing an aircraft carrier, with help from an air in-
tercept controller on an E-2. The distances and
sizes of planes are not to scale. Two red enemy
enemy planes (MiG-29's) are coming in from the
east to attack the aircraft carrier; posing a threat
that the blue fighters must respond to. In the
manmndcofthhsection,wepmtthetypes
of coordination implemented within TacAir-Soar

58

4

F-14

o
e /%

Figure 1: Example Scenario

using examples from this scenario as the blue and
red fighters engage.

Flying as a Section

, a section of two planes has been
found to be the minimal effective fighting unit.
A section consists of a lead and a wingman fly-
ing together on a joint mission. The tactical lead
of the section directs the maneuvering of the sec-
tion, either through his actions or through explicit
communication to the wingman. The goal of the
wingman is to stay in formation and support the
activities of the lead (such as through manipu-
lation of its radar). In some circumstances, the
wmgmnwilltakeomaslead(sud:as:fthe
lead’s equipment malfunctions, or the lead is out
of missiles).

To be an effective section, the lead and wing-
man must coordinate their maneuvering, their
tmngofthemronment,tharunpbymmtof
weapons, and the of their section.
Below is a detailed list of the behaviors that
have been implemented in TacAir-Soar to coor-
dinate behavior for beyond-visual-range engage-
ments such as in Figure 1. These descriptions
(and our implementations) are idealizations of the
real behaviors, but capture much of the essence
of ‘he real behaviors.

Maneuvering

¢ Joining up in Formation
If the planes of a section are split, possibly

59

after taking off, or following an engagement,
the planes must join up into a formation. It
is the responsibility of the wingman to obtain
the correct position and this is done using vi-
sual and radar cues without communication.
However, in cases when the two planes are far
apart, thewingmanmay request position in-
formation from the lead. Although flying into
formation is primarily the responsibility of the
wingman, if the lead is far ahead, the lead may
maneuver, possibly employing a shackle turn,
to allow the wingman to catch up as in position
1 of Figure 1.

Flying in Formation
Alectxonofplanesanﬂymmanydxﬂ'm
formations, such as defensive combat spread,
oﬁmoombatspmd,ﬁghtmgwing,mﬁ-e,
or trail. When flying in formation, it is
ruponm’bmtyofthewmgma.ntomaintmthe

. appropriate position. In Figure 1, the F-14s

are initially in a parade formation.

Formation
The specific formation used by a section can
change as the tactical situation For
example, a section might start off in a tight pa-
rade formation until it gets to its CAP station
and then assume a defensive combat spread at
in position 3 of the scenario. It maintains that
formation until the later parts of an engage-
ment when the planes are closing on an enemy,
at which time they then move to an offensive

combat spread.

¢ Coordinated Maneuvering

As the lead maneuvers, the wingman attempts
tommfommonumponhonaofthe
scenario. However, for large turns, the sec-
tion must perform special maneuvers or else
the wingman will get out of formation. For
example, when the lead wishes to turn 90 de-
grees toward the wingman, as in position 2, the
lead will turn first and then the wingman will
turn once the lead crosses behind him. Con-
versely if the lead wishes to turn away from
the wingman, the wingman turns first. Other
maneuvers include in-place turns and crossover
turns.

¢ Tactical Maneuvering
When engaging enemy planes, a section can
use special maneuvers in order to improve the
geometry of an attack, or to confuse an enemy.
e maneuvers include a pincer (and half
pincer), when the two planes separate and then
close on an enemy, and a post-hole, where the
section flies in a trail maneuver and the lead
plane flies in a circle (to defeat an expected
missile and possibly confuse the enemy), giv-
ing up the lead to the second plane, which
then presses the attack. In Figure 1, the red
planes attempt to employ a pincer at position
5. In addition, a section of planes may perform
defensive maneuvers together, such as jointly
turning into the beam to break radar lock and
avoid a missile. Finally, when attacking an en-
emy, the wingman will usually attempt to slide
to the outside of the formation to give the lead
better position for the attack, as in position 4
of the scenario.

Sensing

¢ Radar
By coordinating their radars, two planes can
cover more area. The details of the “radar
contract” can be determined during the brief-
ing before the actual mission. When planes do
get contacts, they communicate the relevant
position information. Planes can also request
information if they have lost a contact. _

e Vision
Bewnextmsometxmesdxﬁadtforaplaneto
detect enemy planes that are behind it, an im-
portant responsibility is to check the rear of
the other plane. Another important use of vi-
sion is to identify unknown planes. Thus, a
section may split up so that one plane can get
a.vmmlldumﬁutwnwhﬂetheotherupoa
tioned for a shot if the plane is hostile. This
type of within-visual-range coordination is not
yet implemented in TacAir-Soar.

Employing Weapons

Targeting

If there are multiple groups of enemy planes
approaching, the lead (possibly with the AIC)
must determine which group to attack first and
communicate this to the wingman.

¢ Sorting
‘When a section engages multiple enemy planes,
it is critical that the wingman and lead not
waste missiles by shooting at the same plane.
Thus, they must sort the enemy planes, possi-
bly by range, altitude or azimuth, so they are
ing different planes. In general, the lead
will take the plane that is the highest threat
(usually the lead of the opposing section).

Controlling the Section

¢ Changing the Lead

The role of the planes within a section can
change if the wingman is in a better tacti-
cal situation, such as having more appropri-
ate weapons or better situational awareness.
When the wingman takes over, he must assume
all of the responsibilities of the lead, and vice
versa for the original lead.

Communicating Intent

¢ Committing an Enemy
When an enemy plane has been identified as
a bandit, and the commit criteria are reached,
the lead will communicate the intent to inter-
cept to the wingman.

Flying a Section with an AIC or GCI

Normally, a section of planes will have support
from either an airborne or ground-based radar
(. These radars provide a much broader pic-
ture (approximately 250 nms for an E-2) and can

. detect attacking planes well before the section it-

self will see the attackers on its radars. Thus, for
blue, the AIC provides position and identity in-
formation about other planes. The AIC can also
provide engagement information and redirect the
mission of a section, although this is not currently
implemented in TacAir-Soar. For red, the GCl is
more in control and may direct the tactics used
by the section (this is also not implemented in

Figure 2 is a dialogue produced between
TacAir-Soar agents acting as an AIC (Kiwi) and
a section of two F-14's (Hawk121 and Hawk122)
as they engage a MiG-29 in a slightly different
scenario than in Figure 1. Lines starting with %
are comments and were not part of the communi-
cation. We have not attempted to duplicate the
communication produced by humans exactly, but
instead we have attempted to include the inter-

Kiri: kivi, havkl2l your bogey is at bearing 23 for 143 angels 8

: Bach

Havk121: Roger
Kivi: kiwi, Contact is a bandit

plane prefaces its communication with its call sign.
; Bexe Kivi is giving the bearing (23 degrees), range (143 nms) and altitude (8,000 ft).

: Kivi is coafirming that the bogey is an enemy plane.

Hawk121: bawki2l, Contact is a bandit
Havk122:

Hawk121: hawki21, Commit bearing 23 for 140 angels 8

s Hawk121 decides its commit criteria have are achieved and starts to intercept the bandit.
; Bawk121 uses the information from Kiwi to plot an intercept course

Kiwi: kivi, havki2i your bogey is at bearing 21 for 137 angels 8
; Kiwi periodically reports position jnformation to the fighters.

Bavk121:
Havki22: Roger
Kivi: kivi, Bandit is closing on a hot vector

Bawvki21: bavki2i, Bandit is closing on a bhot vector
Hawk121: havkl2l, Go to defensive combat-spread formatiom.

: The section changes formation for the attack.
Kivi: kivi, hawki2l your bogey is at bearing 12 for 116 angels 8

Hawk121: Roger
Havk122:

Havk121: hauk12l, Bandit is closing on a hot vector

Havk121: bhawki2i, Fox three

: Bawk121 fires a long-range missile and then performs an f-pole maneuver.

Bawk121: havki21, Cranking right

Figure 2: Trace of communications between a F-14 section (Hawk121 and Hawk122) and an E-2 (Kiwi).

actions that are necessary for the planes to coor-
dinate their behavior.

Methods for Coordination

For a section to coordinate its behavior, the in-
dividual agents must know many things. They
must know the appropriate techniques and meth-
ods for ing, sensing, employing weapons
and controlling the section. They must also know
the specific constraints under which the current
mission is being flown, such as rules of engage-
ment, commit criteria, and so on. During the
mission, they must also build up their situational
awareness, from their own sensors and through
communication with others. Finally, they must
coordinate their actions in the face of the world
around them. These different types of knowledge
are acquired at different times using the types of
methods listed below.

Common Doctrine and Tactics

Doctrine and tactics specify methods and proce-
dures for behaving in the world. This is similar
to social contracts, where independent agents can
create coordinated behavior by agreeing to be-
have in certain ways under specific circumstances
[Shoham and Tennenholtz, 1992]. For example,
drivers in the United States coordinate their be-
‘havior (and thus avoid accidents) by always driv-
ing on the right side of a street. Similarly, the lead
and wingman have a division of labor so that they

are not both trying to the same activity (such as
maintain formation) at the same time.

From the perspective of coordination, common
doctrine eliminates the need for communication
(two cars passing each other do not need to nego-
tiate which side they will pass), it allows an agent
to predict the behavior of other agents without
even the exact identity of the agent, and
it reduces the cognitive load on an agent because
an agent does not have to plan out its behavior
from first principles.

In TacAir-Soar, common doctrine and tactics
are in Soar’s long-term memory as
rules (as is all long-term knowledge). This con-
stitutes the vast majority of knowledge encoded
in TacAir-Soar.

Mission Briefing

Before a mission, the participants are briefed on
the tactical situation, their responsibilities, and

" often, the responsibilities of others.

61

The briefing helps establish specific operational
parameters required for coordination, such as the
specific partners of a section, their formations,
the methods for communication (radio frequen-
cies, call signs), the default radar contract, the
default method for sorting bandits, any specific
tactics the section plans to employ, and s0 on.

In TacAir-Soar, the mission and all information
relevant to the current run is entered via an editor
that is an extension of ModSAF. This includes the

sides of the agents, the call sign of the agent, the
typeofurphnebungﬂown,nﬂaofengagmt
the location of mission-relevant landmarks, and so
forth. The information is theloadedmtoSoan
short-term memory, which makes it accessible to
all of the rules in TacAir-Soar.

Observed Behavior

During a mission, themanbeuofasectxonean
directly observe each other’s behavior. Thus, be-
havior alone can be a signal for coordinating be-
havior, as when a lead makes a small turn, with-
out any explicit communication.

In TacAir-Soar, there is only limited use of co-
ordination through observed behavior, with the
wing responding to small turns of the lead being
the best example.

Explicit Communication

‘The most flexible way to coordinate behavior is to
explicitly communicate information between two
agents. However many factors drive the military
to minimize verbal communication (it may be dif-
ficult to transmit because of terrain and environ-
mental factors, it increases the cogmtxve load on
the agents that initiate and receive them, and it
can be jammed, intercepted, or used to localize
the position of an agent). Explicit communica-
tion is usually in natural language, and is one of
the most timely types of communication.

In TacAir-Soar, explicit verbal communication
is done via simulated radios (using the radio
PDUs). There are a total of approximately
twenty-five different message types that TacAir-
Soar agents can send and receive (these cover the
types of coordination covered in the previous sec-
tion including messages for coordmating standard
and tactical maneuvering, requesting and send-
ing information about other planes, employing
weapons, and changing the lead.

Communication with TacAir-Soar is natural
enoughaothatxt upossxbleforhumamtoﬂym
section with it using the HIP simulator interface
[van Lent and Wray, 1994]. The HIP interface
allows humans to fly either as lead or wingman
(or even as an E-2) and compose messages that
TacAir-Soa: can understand, while receiving com-
mands or acknowledgements from TacAir-Soar.

Coordination Capabilities
In this section, we draw together the capabili-
ties required for coordination in the tactical air
domain. Thuubuedonthetypesofcootdl
nated behavior (maneuvering, sensing, employ-
ing weapons, etc.), and the methods for sharing
knowledge (doctrine and tactics, mission brief-
ings, etc.). These capabilities serve as a require-
ments list for constructing an agent that can co-

ordinate with others in domains such as tactical
air combat. For each capability, we also describe
how TacAir-Soar implements it.

Extensive Knowledge Base

Each agent must have an extensive knowledge

. base that includes all of the tactics and doctrine

applicable to its poesible roles in the missions in
which it will participate. For example, a wing-
man must have the same knowledge of doctrine
and tactics as the lead, so that the wingman can
take over when necessary. Much of this knowledge
is required even without coordination, but some
will be unique to coordination activities, such as
section-level tactics.

In TacAir-Soar, all of its knowledge is encoded
in a rule-base of over 1400 rules. Its doctrine and
tactics are encoded as a hierarchy of intertwined
goals that are dynamically instantiated based on
the current situation and mission.

Parameter-driven Behavior

An agent must be able to perform a variety of
activities in coordination with others, such as de-
fined by a mission briefing. The agent's behavior
must be parameterized so that the knowledge rel-
evant to the current mission is use:’ These may
sound trivial, but for some complex inissions, the
information in the briefing may involve fragments
of.plans that the agent must integrate into its
overall behavior at the appropriate times. Thus,
the generators of the agent’s behavior must be
flexible enough so that they can be modified dur-
ing a briefing.

Although one might be tempted selectively to
build the knowledge base of an agent during the
mission briefing, this would greatly restrict the
abilities of that agent during the execution of a
mission because of the dynamic nature of mis-
sions. For example, once the planes have taken
off and are headed to their original CAP station,
the situation may change so that they are redi-
rected to a different CAP station.

In TacAir-Soar, all mission-related behavior is
based on a representation of the current mission
that is held in a working memory. This can be ex-
amined by the rules that make up its long-term
knowledge. The mission can be specified at brief-
ing time, but also can be dynamically changed
during the mission.

Reactive Execution

In order to respond quickly to changes in a part-
ner’s behavior, an agent must be reactive. Of

. course, computer generated forces must in gen-

62

eral be reactive, but coordination requires that
they sometimes closely monitor the activities of
other friendly agents. When flying in a section,

the wi must constantly monitor the actions
of the lead, as well as the current spacing between
the planes.

In TacAir-Soar, the wingman's main goal is to
fly in formation with the lead. Rules are con-
stantly monitoring the lead’s actions and the po-
sition of the wingman relative to the lead. When-
ever the wingman is out of position, rules fire to
modify the heading, speed, or altitude as neces-
sary.

Interruptible Processing

In being reactive, an agent is changing its behav-
jor in response to the environment, however it is
not performing any extensive reasoning, nor is it
necessarily interrupting its ongoing goals. How-
ever, when an agent is communicating with other
agents, it must often interrupt its current goals
both to process the communication and to change
its behavior in response to a message. For ex-
ample, an agent may be flying an intercept of a
bandit based on previous information from an E-
2. When a new message arrives with new posi-
tion information on the bandit, the agent must
acknowledge the message, possibly abandon its
current heading and compute a new heading.

In Soar, we have split the processing of incom-
ing communications into two steps. The first is a
high priority activity that categorizes the message
and modifies the internal state of the agent in re-
sponse to the message. The purpose is for this to
happen quickly before other messages overwrite
it. Following this, rules sensitive to the change
will suggest changes to the current activities that
theagentupumnng A more extensive exam-
ination of the problem of integrating communi-
cation (and natural language processing) within
Soar has been done within the context
of modeling the NASA Test Director, who is re-
sponsible for coordinating the launch of the Space
Shuttle [Nelson et al., 1994).

Translate internal information into
messages

In order to communicate with other agents, an
agent must be able to translate its internal in-
formation about its goals, its perception of the
world, and its current actions into a form that
can be understood by other agents. To do this
right in general requires solving the natural lan-
guage generation problem. -

In the current version of TacAir-Soar, we are
finessing the general problem and using an ad
hoc approach where we prespecify the messages
that the system can generate and when it should
generate them. Thus, our agents do not explic-
itly plan their communications nor do they dy-
namically construct messages from the appropri-

63

ate pieces. Instead they fill in prespecified tem-
plates. This approach has been successful for the
limited types of communication our agents need
to produce, but will break down when we get to
more complex interactions and for these we are
investigating more general approaches [Rubinoff
and Lehman, 1994]. The form of our messages is
based on the “Comm Brevity” lists of terms used
by Navy pilots. This list contains over 150 terms,
of which we use only those required for our cur-
rent level of coordination, which is approximately
30 terms.

The most problematic type of communication
is when an agent wishes to refer to another plane.
For example, when the lead wishes to tell the
wir_jman that they are committing to a bandit,
the lead needs to specify which bandit it is. In-
ternal to the lead, this may be represented by an
internally generated name (such as B12), but the
lead can not use that in the communication. In-
stead, the lead must use positional information,
such as the bearing, range, and altitude of the
bogey. This is problematic because the positional
information is inexact and time dependent.

Translate messages into internal
information

The converse of the prior problem is translating
messages from other agents into an internal repre-
sentation that the agent can work with. As above,
to do this right in general requires solving the nat-
ural language understanding problem.

In the current version of TacAir-Soar, we are
also finessing this problem by only accepting the
message types that our agents generate (although
we are also examining more general approaches
[Rubinoff and Lehman, 1994]). By limiting the
types of messages the system can accept, it is
straightforward to translate the messagesinto the
internal goals, actions, and state information of
our agents. As above, the most problematic tazk
is handling references to other ageats, and this
mdonebyﬁndmgtheagentmtheamronmmt
that most closely matches the description it is
sent [Jones and Laird, 1994].

Conclusion

The purpose of this paper is to examine the capa-
bilities required in a computer-generated force to
support coordination. We have studied the low
end of coordination as implemented in TacAir-

Soar, where there are tight interactions between
the agents invoived. TacAir-Soar is proof that
such coordination is possible, but that it required
knowledge-rich, reactive, interruptible process-
ing, with high frequency of relatively short mes-
sages. Qur long term goal is to study coordina-
tion across the command hierarchy. As we move

up the command hierarchy, we would expect that
the frequency of the messages will decrease and
the length of the message will increase, placing
less emphasis on reactivity and interruptibility
and more emphasis on the process of interpret-
ing and generating messages.

Acknowledgements

‘This research was supported at the University of

i as part of contract N00014-92-K-2015
from the Advanced Systems Technology Office of
the Advanced Research Projects Agency and the
Naval Research Laboratory. The authors would
like to thank BMH Associates, Inc. for their
technical help, and to the other members of the
Soar/TFOR project.

Biographies

John E. Laird is an associate professor of Electri-
cal Engineering and Computer Science and the di-
rector of the Artificial Intelligence Laboratory at
the University of Michigan. He received his B.S.
degree in Computer and Communication Sciences
from the University of Michigan in 1975 and his
M.S. and Ph.D. degreesin Computer Science from
Carnegie Mellon University in 1978 and 1983, re-
spectively. His interests are centered on creating
integrated intelligent agents (usmgtheSoarardn

tecture), leading to research in problem solving,
complex behavior representation, machine learn-

ing, cognitive modeling.

Randolph M. Jones received his Ph.D. in Infor-
mation and Computer Science from the Univer-
sity of California, Irvine, in 1989. He is currently
an assistant research scientist in the Artificial In-
telligence Laboratory at the University of Michi-
gan. His research interests lie in the areas of intel-
ligent agents, problem solving, machine learning,
. and psychological modeling.

Paul E. Nielsen is an assistant research scien-
tist at the Artificial Intelligence Laboratory of the
University of Michigan. ' He received his Ph.D.
from the University of Illinois in 1988. Prior
to joining the University of Michigan he worked
at the GE Corporate Research and Development
Center. His research interests include intelli-
gent agent modeling, qualitative physics, machine
learning, and time constrained reasoning.

References

[Calder et al.,, 1993] R. Calder, J. Smith,
A. Courtenmanche, J. Mar, and A. Ceranow-
icz. ModSAF behavior simulation and con-
trol. In Proceedings of the Third Conference
on Computer Generated Forces and Behavioral
Representation, 1993. Available as Technical
Report IST-TR-93-07 from the University of
Central Florida.

[Jones and Laird, 1994] R. M. Jones and J. E.
Laird. Multiple information sources and multi-
ple participants: Managing situational aware-
ness in an autonomous agent. In Proceedings
of the Fourth Conference on Computer Gen-
erated Forces and Behavioral Representation,
May 1994.

[Laird et al, 1987] J. E. Laird, A. Newell, and
P. S. Rosenbloom. Soar: An architecture
for general intelligence. Artificial Intelligence,
33(3), 1987.

[Nelson et al., 1994] G. Nelson, J. F. Lehman,
and B. E. John. Experiences in interruptible
language processing. Unpublished, 1994.

[Powell and Hutchinson, 1993] D. R. Powell and
J. L. Hutchinson. Eagle II: A prototype for
multi-resolution combat modeling. In Pro-
ceedings of the Third Conference on Computer
Generated Forces and Behavioral Representa-
tion, 1993. Available as Technical Report
IST-TR-93-07 from the University of Central
Florida.

[Rosenbloom et al., 1994] P. S. Rosen-
bloom, W. L. Johnson, R. M. Jones, F. Koss,
J. E. Laird, J. F. Lehman, R. Rubinoff, K. B.
Schamb, and M. Tambe. Intelligent automated
agents for tactical air simulation: A progress
report. In Proceedings of the Fourth Conference
on Computer Generated Forces and Behavioral
Representation, May 1994.

[Rubinoff and Lehman, 1994] R. Rubinof and
J. F. Lehman. Natural language processing in
an IFOR pilot. In Proceedings of the Fourth
Conference on Computer Generated Forces and
Behavioral Representation, May 1994,

[Shoham and Tennenholtz, 1992
Y. Shoham and M. Tennenholtz. On the syn-
thes:sofusefulaoaallawsforamﬁaalagm
societies (p: report). In Pmceedmga
of AAAL-92. Morgan Kaufmann, 1992

[van Lent and Wray, 1994] M. van Lent and
R. Wray. A very low cost system for direct
human control of simulated vehicles. In Pro-
ceedings of the Fourth Conference on Computer
Generated Forces and Behavioral Representa-
tion, May 1994,

Natural Language Processing in an IFOR Pilot

Robert Rubinoff
Carnegie Mellon University
Pittsburgh, PA 15213
rubinoff@cs.cmu.edu

Abstract

The creation of autonomous intelligent forces
(IFORs) for both large-scale distributed simu-
lations and small-scale, focussed training ex-
ercises creates unique challenges for natural
language processing. An IFOR’s role will
often be to replace one or more individu-
als in an engagement, making the ability to
communicate in natural language key to its
performance as well its acceptance by other
participants. In this paper, we describe the
capabilities an IFOR needs to communicate
appropriately and discuss how the NL-Soar
language system provides these capabilities
for TacAir-Soar, an IFOR agent for beyond-
visual-range combat.

Introduction: IFORs and Commu-
nication

The creation of autonomous intelligent forces
(IFORs) offers the possibility of running both
large-scale distributed simulations and small-
scale, focussed training exercises with lower
manpower, cost, and logistical support re-
quirements than previously possible. How-
ever, since an JIFOR’s role will often be to
replace one or more individuals in an engage-
ment, the ability to communicate in natural
language can be a key aspect of its overall
performance. An agent that cannot commu-
nicate at all is severely limited in the roles it

65

Jill Fain Lehman
Carnegie Mellon University
Pittsburgh, PA 15213
jef@cs.cmu.edu

can play. An agent that uses only a highly
restricted subset of natural language may be
easily detectable as a computer-generated foe,
one that can be “gamed” without providing the
actual training experience that is the point of
the exercise. Further, an agent that is unlikely
to comprehend the subset of language actually
used by human participants puts an undue bur-
den on those participants to communicate in
a way that it can respond to, again changing
the rules of the game. Finally, an agent that
is rigid in its communicative ability may in-
troduce a brittleness into the simulation (i.c. a
tendency to fail in unexpected ways) that has
nothing to do with imperfections in strategic
or tactical knowledge.

Although the need to address the problem
of natural language processing for IFORs is
clear, the problem is complicated by the di-
verse ways in which NL can be called on
to augment the functionality of the ageat.
For example, in building TacAir-Soar, a jet-
fighter pilot IFOR for beyond-visual-range
combat [RTLR93, RJJ*94], an NL capabil-
ity is needed for basic interaction among pi-
lot, wing, and air intercept control (AIC), as
well as for descriptive explanation both dur-
ing flight and in after-action review. We
are adapting the NL-Soar language system
[LLN91, Lew93] to provide that capability.!

IHere, we discuss our current work in basic in-
teractive communication; see [Joh94) for details on
explanation in after-action review.

E—

There are three main characteristics of com-
munication during air combat that present
challenges for this research. The first chal-
lenge stems from the nature of the task itself:
language processing occurs in real-time, as
a single aspect of behavior in a constantly
changing situation. Thus, in order to ade-
quately simulate a human pilot, an IFOR must
comprehend and generate language at roughly
human rates. Ifit is too slow, it will be unable
to keep up with both the linguistic and non-
linguistic demands of the environment. If it
is too fast it may commit to actions before co-
ordinating its behavior with other sources of
information (e.g. visual information from the
radar).

The second challenge stems from the nature
of the implementation: NL-Soar must be inte-
grated into the structure of an independently-
designed system. The organization of TacAir-
Soar (and of IFORs in general) derives from
the nature of the task(s) it performs; there is
no a priori reason to expect this organization
to be consistent with the assumptions under-
lying NL-Soar’s design.

The third challenge stems from the partic-
ular nature of language in the domain. NL-
Soar was originally designed to process com-
plete grammatical sentences. The language
in the tactical air combat domain differs from
this both by including “ungrammatical” utter-
ances such as sentence fragments and by con-
taining many special purpose constructions
(e.g. “roger” or the use of call-signs). In the
rest of this paper, we explore the implications

_of these challenges in more detail and discuss
how we are addressing them.

Real-time Communication

Communication in an IFOR must occur in
real-time. This is not a statement about how
fast the system must run, per se. Rather, it
is a theoretical statement about how process-

66

ing must occur within the system. Put sim-
ply, people can comprehend at rates of about
250 msec/word (they tend to generate lan-
guage a bit more slowly). Although there is
variability (some words take as little as 50
msec, others may take closer to 1000 msec),
the pointis that, in general, the amount of time
is linear in the number of words in the utter-
ance. A number of design constraints follow
from this simple regularity [LLN99], e.g. con-
struction of the meaning of the sentence must
proceed incrementally, different knowledge
sources (e.g. syntax, semantics, pragmatics)
must be applied in an integrated rather than
pipe-lined or multi-pass fashion. NL-Soar
provides these properties [LLN91, Lew93].
Briefly, the system relies on Soar’s notion
of impasse to control the search through its
linguistic knowledge sources, and then on
Soar’s leaming mechanism to compile those
disparate pieces of knowledge into an inte-
grated form that can be applied directly (i.e.
in constant time/word) in the future.

To make the nature of integration in NL-
Soar more concrete, consider Figure 1, a
graphical representation of a particular sys-
tem that uses NL-Soar for comprehension and
generation. Linguistic processes, like all pro-
cesses in Soar, are cast as sequences of 10p-
erators {small arrows) that transform istates
(boxes) until a goal state is achieved. The
triangles in-the picture represent iproblem
spaces which are collections of operators.2
The comprehension problem spaces contain
operators that use input from the perceptual
system to build syntactic and semantic struc-
tures on the state; the generation problem
spaces contain operators that use semantic
structures to produce syntactic structures and
motor output. Note that the there is a spe-
cial problem space, labelled Top, which is
connected to the perceptual and motor sys-

2For more details on how Soar uses problemspaces,

states and operators to organize its processing see
[New90, LNR87].

tems. The Top space is the only problem space
designated by the Soar architecture; all other
problem spaces are provided by the system
designer. The dotted lines in the figure rep-
resent Soar’s impasses which arise automati-
cally when there is a lack of knowledge avail-
able in the current problem space. When an
impasse arises, processing continues in sub-
spaces until the goal state in the subspace is
reached. Thick banded arrows represent the
resolution of an impasse, when chunks are
formed. Chunks are new pieces of knowledge
that are added to the system. They combine
those conditions in the pre-impasse problem
space that were used to reach the goal state
in the subspace with the actions performed in
the subspace to reach the goal state.

‘What does this mean for NL-Soar? As an
example, consider the arrival of a new word
into the Top state in some established context.
Now assume that we have never seen the word
in a similar context in the past. An impasse
will arise and problem solving will continue
in the Comprehension spaces until we reach
the goal state in which we have defined the
appropriate syntactic and semantic structures.
When we return those structures to the Top
state, chunks will be formed. In this case
the chunks will propose operators directly in
the Top state the next time this word is seen
in a similar context. In other words, the next
time, no impasse will occur; the problem solv-
ing that took place in the subspaces has been
integrated into a smali number of Top space
operators that execute directly to build the rel-
evant structures on the Top state.

A consequence of relying on Soar’s leamn-
ing mechanism is that achieving real-time lan-
guage behavior requires training NL-Soar off-
line in advance. (Requiring NL-Soar to “learn
while doing” would be equivalent to expect-
ing the pilot to learn the domain language
while flying the plane in battle.) When first
loaded, TacAir-Soar/NL-Soar’s lexical, syn-
tactic, semantic, and discourse knowledge are

67

all separate; it’s as if the IFOR knew all the
rules for how to communicate but had no ex-
perience using them. Off-line training allows
NL-Soar to learn from experience in a non-
real-time setting. This gives the system the
time it needs to integrate its disparate knowl-
edge sources into “chunks” that NL-Soar can
apply in a single step. It is this highly com-
piled formof language knowledge that models
an experienced pilot and provides real-time
language behavior on-line.

Integrating Language with the Task

As mentioned above, NL-Soar was devel-
oped independently of TacAir-Soar. Indeed,
as with many NL systems, NL-Soar was de-
veloped independently of the need to actually
do anything non-linguistic. But, of course,
most language, and certainly the communica-
tion between a pilot and AIC or wing, is gen-
erated and comprehended in service of some
task that is, itself, essentially non-linguistic.
As aresult, NL-Soar must be adapted to seem-
lessly integrate the language capability with
those non-linguistic capabilities in the agent,
e.g. perception, planning, reasoning about the
task. We have successfully done this on
a smaller scale in NTD-Soar, a non-IFOR
agent’. The structure of NTD-Soar, shown
in Figure 1, is quite different from that of
TacAir-Soar. In particular, NTD-Soar models
switching between multiple tasks by invok-
ing each task from the Top problem space;
if a task is interrupted, its state is preserved
in the Top space until it can be resumed. In
essence, NTD-Soar models tasks in a fashion
similar to co-routines. This structure allows
language to be integrated easily by treating it
as just another task. Informationis transferred

3NTD-Soar is a model of the NASA test director
who is responsible for coordinating many facets of the
testing and preparation that the Space Shuttle must go
through before it can be launched [NLJ94].

Top

control knowledge for interleavi
top-level usk:‘i)%mors e
integrated language operators

Comgrehension z Generation

paces 2 < Spaces
m -
Figure 1: Structure of NTD-Soar

between language and other tasks by sharing

the common Top state in the same problem PerceptualMotor

space in which the task-switching control is '

done.

TacAir-Soar, in contrast, keeps only a sin- Execute-Mission

gle task active at a time, but it maintains a
stack of levels of abstraction of that tssk, and
each level stays active as long as it is being Y
carried out. Thus TacAir-Soar uses Soar’s top o

state to keep track of the “execute-mission”

task, which stays active for the entire simula- Mig-Sw

tion. Under this will be a stack of sub-tasks, {or othar mibsion)
such as “mig-sweep”, “intercept”, “employ-
weapons”, and so on, each representing a

more detailed view of what the ageat is cur- ' é

reatly trying to do. Much of TacAir-Soar’s -more task spaces
knowledge of its current situation and goals is

stored in sub-states associated with these sub- N Soar
spaces, not on the top state. Thus if TacAir- paces

Soar switched to language in its top state, as
NTD-Soar does, it would lose much of this
knowledge.

Because of the need to preserve TacAir- .
Soar’s stack of subtasks, we have modified Figure 2: NL-Soar with Tac. oar

68

NL-Soar to operate at any level of the stack
rather than just at the top. NL-Soar is thus in-
voked as a sub-task of the bottom-level task,
preserving the stack. The resulting structure
can be seen in Figure 2. This structure has the
consequence of making language operate as a
sub-task of the domain task(s), rather than as
a separate task alongside them. While this is
often reasonable, since the agent may be talk-
ing about what it's currently doing, it is not
always so. Particularly in the case of compre-
hension, it may turn out that what someone
says to the agent has to do with an entirely
new task that the agent w.!l start working on
because of the communication. Given this
and related problems, we are still exploring
the overall issue of how best to integrate the
structures of TacAir-Soar and NL-Soar.

Using Realistic Language

In addition to developing NL-Soar indepen-
dently of TacAir-Soar, it was also developed
independently of the language of the tacti-
cal air domain. This has two specific conse-
quences. First, NL-Soar does not contain any
of the domain-specific words and construc-
tions used in tactical air combat. Further-
more, NL-Soar was designed to contain only
competence knowledge. The competence-
performance distinction {Cho65] reflects the
difference between what people would rec-
ognize as fluent, grammatical speech, and
actual speech as it occurs in everyday con-
versation. Thus NL-Soar must be able to
comprehend and generate in accordance with
domain-specific performance data, with all of
its idiosyncratic constructions, ungrammat-
icalities, self-corrections, etc. In order to
help adapt NL-Soar to this requirement, we
have collected protocols of pilot/AIC and pi-
lot/wing/AIC communication in a number of
scenarios in a simulated environment. Doc-
trine with respect to communication is quite

69

specific, stressing brevity and clarity. In addi-
tion to a highly specialized lexicon, this tends
to result in a fairly agrammatical, telegraphic
style, with periodic lapses into more standard
English. This can be seen, for example, in
Figure 3, which shows an excerpt from our
protocols in which the AIC (whose call-sign
is blue tail) guides the pilot (whose call-sign
is dakota 204) to acquire his bogey (uniden-
tified radar contact). (Punctuation has been
added to aid the reader) We can see here
the use of domain-specific forms at all levels:
syntactic (using call-signs in every sentence),
semantic (“single” meaning “a plane flying
unaccompanied”), and discourse (“roger” to
acknowledge having heard someone). In ad-
dition, the pilot’s last utterance demonstrates
the kinds of “imperfect” speech (here pauses
marked by “uh” and “eh”) that NL-Soar must
be able to comprehend and generate.

This challenge is easier to handle in gen-
eration than in comprehension, because NL-
Soar has control over the structures that pro-
duce the surface form during generation; if it
needs to generate an “ungrammatical” struc-
ture, it can simply build it and mark it as a
special case. Of course, some care must still
be taken to make sure that vhe special cases
aren’t .« peneral (for example, the ability
to say “~ger” must not allow NL-Soar to
utter any word as a single-word utterance).
The problem is more complex during com-
prehension because the system is trying to
recover the relevant structures from the sur-
face form. Since NL-Soar can’t know in ad-
vance whether the current utterance is fol-
lowing general English grammar, a domain-
specific grammar, or represents some sort
of speech error, the search space of possi-
ble interpretations can become quite large.
There are a number of techniques that have
been developed for dealing with this problem
[FB86, Gra83, WB80, Leh90], although it re-
mains for us to systematically evaluate the
usefulness of each technique given the struc-

SEEAKERS[‘AKIEND UTTERANCE

13:30:41 13:30:46 dakota 2 0 4. blue tail. contact 2 7 0. approximately 50

miles.

Pilot 13:30:48 13:30:49 dakota 2 04 is clean.

AIC 13:30:52 13:31:00 roger. dakota 2 0 4 contact now 2 7 0. approximately 45
miles. appears to be single. contact at angels 18.

Pilot 13:31:01 13:31:04 dakota 2 0 4 roger. intermittent contact.

AIC 13:31:06 13:31:11 dakota2 0 4. coatact’s now 2 7 0. approximately 35 miles.

Pilot 13:31:15 13:31:22 dakota 2 0 4. contact on the nose. uh bearing2 5§ 5. ¢h 26
miles.

AlIC 13:31:23 13:31:24 roger dakota that’s your contact

Figure 3: Sample pilot conversation

ture of NL-Soar and the particular linguistic
phenomena in the tactical air domain.

Summary

In this paper, we have discussed some of the
challenges involved in providing an IFOR
with communication capabilities that allow
it to successfully simulate human behavior.
These include the need to communicate in a
real-time environment, to appropriately inte-
grate the IFOR’s language processing with
its task operations, and the need to cope
with domain-specific and ungrammatical lan-
guage. Our adaptation of the NL-Soar lan-
guage system to work with the TacAir-Soar
IFOR agent continues to be guided by these
concerns; despite a number of unresolved is-
sues, we believe NL-Soar has the potential to
provide TacAir-Soar with the necessary kmds
of linguistic behavior.

Acknowledgement

This research was supported under subcon-
tract to Carnegie Mellon University from the
University of Michigan, as part of contract
N00014-92-K-2015 from the Advanced Sys-
tems Technology Office (ASTO) of the Ad-

70

vanced Research Projects Agency (ARPA)
and the Naval Research Laboratory (NRL).
Tom Brandt, Bob Richards, Ken Smith, and
Ed Harvey of BMH Inc. were instrumental in
providing subject matter expertise.

References
[Cho6S] N. Chomsky. Aspects of the The-
ory of Syntax. MIT Press, Cam-
bridge, MA, 1965.

P. K. Fink and A. W. Biermann.
The correction of ill-formed input
using history-based expectation
with applications to speech under-
standing. Computational Linguis-
tics, 12(1), 1986.

R. H. Granger. The nomad sys-
tem: Expectation-based detec-
tion and correction of errors dur-
ing understanding of syntactically
and semantically ill-formed text.
American Journal of Computa-
tional Linguistics, 9, 1983.

W. Lewis Johnson. Agents that
explain their own actions. In
Proceedings of the Fourth Con-
ference on Computer Generated

(FB86)

[Gra83]

[Joh94}

[Leh90]

[Lew93]

[LLN99)

[LLN91])

[LNR87]

[New90]

[NLJ94]

[R1J*94]

Forces and Behavioral Represen-
tation, 1994.

Jill Fain Lehman. Adaptive pars-
ing: A general method for leamn-
ing idiosyncratic grammars. In
Proceedings of the Sixth Inter-
national Conference on Machine
Learnin g, 1990.

R. L. Lewis. An Architecturally-
based Theory of Human Sen-
tence Comprehension. PhD the-
sis, Cammegie Mellon University,
1993.

J. Fain Lehman, R. Lewis, and
A. Newell. NL-Soar: Architec-
tural influences on language com-
prehension. In Cognitive Archi-
tecture. Ablex Press, 1997 in
press.

J. Fain Lehman, R. Lewis, and
A.Newell. Integratingknowledge
sources in language comprehen-
sion. In Proceedings of the Thir-
teenth Annual Conferences of the
Cognitive Science Society, 1991.

John E. Laird, Allen Newell,
and Paul S. Rosenbloom. Soar:
An architecture for general in-
telligence. Artificial Intelligence,
33:1-64, 1987.

Allen Newell. Unified Theories
of Cognition. Harvard University
Press, Cambridge, MA, 1990.

G. Nelson, J. E Lehman, and B.E.
John. Experiences in interruptible
language processing. In Proceed-
ings of the 1994 AAAI Spring Sym-
posium on Active NLP, 1994,

Paul S. Rosenbloom, W. Lewis
Johnson, Randy M. Jones, Frank

71

Koss, John E.
Laird, Jill Fain Lehman, Robert
Rubinoff, Karl B. Schwamb, and
Milind Tambe. Intelligent auto-
mated agents for tactical air sim-
ulation: a progress report. In
Proceedings of the Fourth Con-
Jerence on Computer Generated
Forces and Behavioral Represen-
tation, 1994.

[RTLR93] Jones R., M. Tambe, J. Laird,
and P. Rosenbloom. Intelligent
automated agents for flight train-
ing simulators. In Proceedings
of the Third Conference on Com-
puter Generated Forces and Be-
havioral Representation, Univer-
sity of Central Florida, 1993. IST-'
TR-93-07.

R. M. Weischedel and J. E.
Black. Responding intelligently
to unparsable inputs. American
Journal of Computational Lin-
guisitics, 6(2), 1980.

[WB80]

Biographies

Robert Rubinoff is a postdoctoral research fel-
low in Camegie Mellon’s School of Computer
Science. He received his B.A., M.SE,, and
Ph.D. from the University of Pennsylvania in
1982, 1986, and 1992, respectively; his dis-
sertation research was on “Negotiation, Feed-
back, and Perspective within Natural Lan-
guage Generation”. His research interests
include natural language processing, knowl-
edge representation, and reasoning. He is cur-
rently working on natural language generation
within the Soar project.

Jill Fain Lehman is a research computer
scientist in Carnegie Mellon’s School of Com-
puter Science. She received her B.S. from
Yale in 1981, and her M.S. and Ph.D. from

e

Carnegie Mellon in 1987 and 1989, respec-
tively. Her research interests span the area of
natural language processing: comprehension
and generation, models of linguistic perfor-
mance, and machine leaming techniques for
language acquisition. Her main project is NL-
Soar, the natural language effort within the
Soar project.

72

Working with ModSAF: Interfaces for Programs and Users

Karl B. Schwamb
Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, CA 90292
schuamb@isi.edu

Abstract

In order to explore the domain of air-to-air com-
bat with Soar, a unified theory of cognition used
to model human behavior, it was necessary to in-
terface Soar to vehicles which use the Distributed
Interactive Simulation (DIS) protocol. Rather
than create what would be in essence a simulator
of fighter aircraft, the ModSAF simulation system
was chosen to simulate fighter aircraft and pro-
vide a DIS interface. To link Soar and ModSAF,
we have developed the Soar/ModSAF Interface
(SMI). The SMI provides a simulated cockpit for
Soar pilots. To guide others in the development of
interfaces for other intelligent systems, this paper
describes the SMI along with associated design
constraints. Implementation details concerning
functionality, modularity, and efficiency are ad-
dressed. We also identify issues arising from in-
tegration difficulties.

Introduction

Computer modeling of intelligent agent behavior
is a concern to many researchers in the fields of
cognitive science, artificial intelligence, and psy-
chology. The Soar community is particularly
interested in developing a model which encom-
passes a unified theory of cognition [Soar]. To this
end, Soar researchers are interested in modeling
agents that operate in challenging environments
[TacAir]. Dynamic environments which require
the application of a fair amount of domain knowl-
edge offer a diverse set of problems that must be
addressed in developing agents which simulate in-
telligent behavior. These problems require the
development of a number of cognitive facilities in
order to successfully simulate agent behavior and
the unified approach of Soar is helpful in merging
these facilities into a coherent whole.

One environment which provides these chal-
lenges is the domain of air-to-air combat. In
this domain, fighter pilots must make quick de-
cisions concerning enemy aircraft in the service
of completing a mission. Developing an intelli-
gent vehicle or robot to operate in such an envi-

Frank Vincent Koss
Artificial Intelligence Laboratory Artificial Intelligence Center
University of Michigan
1101 Beal Avenue
Ann Arbor, MI 28109-2110
kossQumich.edu

Dave Keirsey

Hughes Research Lab
Hughes Aircraft Company
Malibu, CA

keirsey@aic.hrl . hac.com

Unix workstation

ModSAF SMI Soar

Network

Figure 1: The Relationship of Soar, ModSAF,
and the SMI.

ronment is much too costly and the requirements
of sensorimotor hardware development is too dis-
tracting from the central focus of behavior mod-
eling. Given these concerns, the natural testbed
for such development is a simulator. This simu-
lator should provide a rich, high-fidelity world so
that modeling of pilot behavior is not perverted
by simulation artifacts. Fortunately, the Mod-
SAF system [ModSAF] provides a rich simulation
environment - it is designed to simulate vehicles
in cooperation with conventional live force exer-
cises.

ModSAF provides a platform for research into
the control of all kinds of computer generated
forces. In essence, ModSAF simulates the oper-
ation of DIS compatible vehicles. These vehicles
can be directed by software-controlled agents or
human beings. By using ModSAF, researchers
can focus their work on the development of be-
lievable agents rather than on vehicle simulation
issues, such as motion dynamics and DIS net-
working. Our work deals with the problems of
interfacing artificially intelligent agents, modeled
using the Soar system, to ModSAF. The mod-
ule which supports the connection between the
two systems is called the Soar/ModSAF Interface
(SMI). Figure 1 shows the relationship between
Soar, ModSAF, and the SMI.

Soar agent condoriOi> p 062
(062 “racetrack-dir 092
“racetrack-length 093
“type barcap
“risk-type high
“heading 046
“altitude 047
“gpeed 048
“id *nones
~“e2c-id *nones*
“level-of-experience low
“voice *nones
“ground-voice *none#)
(092 “value 0 “units degrees)
(093 ~“value 36000 “units meters)
(046 “value O “units degrees)
(047 “value 7900 “units feet)
(048 “value 320 “units meters/second)

Soar agent condor101>

Figure 2: Working Memory Elements (WMEs)
representing vehicle status information.

First we discuss the abstraction the SMI cre-
ates for Soar. We then move to the connection
between Soar and ModSAF, and why other alter-
natives were not used. The “division of labor”
among Soar, ModSAF, and the SMI is also ex-
plained, followed by implementation details.

The Cockpit Abstraction

Since Soar agents are constructed by modeling
human pilots, it is imperative that the SMI pro-
vide an interface which emulates the environ-
ment of the human pilots - the aircraft cockpit.
Soar agents receive input data corresponding to
sensory information they would obtain from the
cockpit environment, e.g. radar displays, radio
messages, vehicle status indications, and visual
sightings out of the cockpit canopy. This informa-
tion is provided to Soar in the form of symbolic
working memory elements (WMEs), not images
or digitized audio. WMEs are the basic unit of
information on which Soar acts. Soar agents also
issue output commands to control the vehicle’s
motion, radar, weapons and radio. The specific
Soar 1/O0 WMEs defining the Application Pro-
grammer Interface (API) to the simulated cock-
pit are documented elsewhere!. An example of
the WMEs representing the vehicle’s status are
shown in figure 2.

Unfortunately, there is no cockpit component
provided by ModSAF. The SMI must create this

1Users with access to the World Wide Web on
the Internet can view this information using the URL
http://krusty.eecs.umich.edu/ifor.

facility for Soar agents via manipulation of the
relevant ModSAF components and creation of
new facilities. For this reason, the SMI is not
a simple translation device between the two sys-
tems. Currently, control of a vehicle occurs
through setting the desired state of the vehicle
such as its speed, heading, and altitude. This
level of control makes certain tasks difficuit. For
instance, it is not possible to cause the vehicle
to climb without providing a desired altitude.
Thus, attempting to stay in formation with an-
other vehicle during a climb is very difficult since
the agent must constantly monitor the altitude of
the other vehicle and reset its desired altitude ac-
cordingly, rather than simply climbing until the
other vehicle levels off. To more accurately model
the vehicle control available to a pilot, the SMI
will need to access lower-level ModSAF libraries
which more closely correspond to cockpit con-
trols.

The wmajority of the cockpit functionality
is already provided by ModSAF in other k-
braries. Examples include the radar screen, mis-
sile launching, and detection of visual objects.
These components are relatively straight-forward
to access, requiring only the translation of units,
reformatting, and reorganization of data. How-
ever, the missing cockpit components require the
development of completely new functionality. A
radar warning receiver and a radio device for
inter-agent communication are examples. These
additional components use ModSAF libraries at
a low-level, if at all. Much more design and de-
velopment is required for such enhancements.

Communication between Soar and
ModSAF

The SMI design must be efficient and modular.
Soar and ModSAF are designed as stand-alone
systems and each system is designed to be the
primary process running - not needing to func-
tion with other large processes. While these
could be run as separate processes, Soar, Mod-
SAF, and the SMI are incorporated into a sin-
gle process to reduce communication overhead
and increase overall system throughput. There
is no need to encode and decode over a more
general mechanism such as Unix sockets. This
also enables high-bandwidth communication be-
tween Soar and ModSAF to be made more ef-
ficiently. Since both systems have a scheduler
but one system must be in control of the primary
scheduling, it was decided that ModSAF should
call upon Soar at the appropriate times. This
is natural since ModSAF controls the simulated
“world” and Soar agents are agents in that world.

The incorporation of Soar, ModSAF, and the
SMI into one process was fairly easy since all are
written in the C language and utilize user-defined

74

C libraries. The communication overhead is re-
duced by handling all 1/O data flow through C
function calls. Input to Soar systems takes the
form of adding WMEs to Soar’s memory. Output
is carried out through placing WMEs in specific
parts of the memory. To ease the task of adding
Soar input working memory elements, an exist-
ing package was used that provides a convenient
API to manage input working memory element
retractions and assertions [SoarSIM].

For efficiency, the decision was made to only
pass integer data values to Soar even though
ModSAF calculated some data values using float-
ing point numbers. The Soar input values were
marked as being changed based on the rounded
off values. This greatly reduced the number of
memory updates needed during each Soar cycle.
For small real number data items, the values were
scaled into a larger integer range.

Until the advent of this project, Soar had been
designed to support just one agent per process.
Since Soar and ModSAF were to be run as a sin-
gle process, the Soar system had to be modified
to support multipleindependent agents. Soar was
generalized to allow the dynamic creation and de-
struction of agents, each operating with indepen-
dent .nemories and I/O channels. There was no
definitive critieria for defining an inter-agent com-
munication mechanism, so none was created.

Functionality of Soar, ModSAF, and
the SMI

Soar and ModSAF are very different systems.
Each has certain capabilities that the other lacks
because they were designed to different ends.
When deciding where to implement certain func-
tionality, in Soar, ModSAF, or the SMI, the
strengths of the systems were the determining fac-
tors.

Ideally, ModSAF would be responsible for all
vehicle and environment simulation and network
interfacing, thus representing the aircraft and the
world. Soar would be responsible for interpret-
ing the world and controlling the plane, as a hu-
man pilot does. Such a clean separation is not
possible. ModSAF provides a method for con-
trolling vehicles called tasks. A number of tasks
with different priorities can be assigned to a ve-
hicle. The behavior of a vehicle is the result of
the action of these tasks. Soar does not use these
ModSAF tasks since a Soar agent typically de-
liberates about such things. The separation of
vehicle simulation and tasks in ModSAF is not
perfect, so the SMI fills in the gaps to provide
a cockpit simulation to Soar agents. The Soar
agent, for instance, sets the desired altitude and
speed of the vehicle. This means that some of the
functionality provided in tasks must be recreated
in the SMI. This is due to the fact that there is

no convenient way to use the functionality of the
tasks without committing to use of more Mod-
SAF machinery.

ModSAF has a library which provides facilities
for editing various data structures. These graph-
ical editors are used for such activities as creat-
ing vehicles and specifying missions to ModSAF
vehicles. The Soar agents, however, use a repre-
sentation of missions different from that provided
by ModSAF. Therefore, the library that imple-
ments the editor and one that uses it were modi-
fied so that Soar-compatible missions can be cre-
ated, saved, and modified. The modification of
the ModSAF libraries had a number of advan-
tages over writing an entirely new editor. First,
the ModSAF editor has sub-modules defined for
editing various data types, such as angles, speeds,
and map locations. These sub-modules are used
by the Soar mission editor. Second, modifying
the editor library required much less time than
would have been required to create a new edi-
tor from scratch. Even the time required to make
these additional changes with each future releases
of ModSAF is minor compared to the saved de-
velopment time. Finally, as screen area is at a
premium, reusing area that is already allocated
benefits the user.

When Séar agents must communicate with one
another, they must use some medium. outside
their 1/O channels, just as humans do. In the
air-to-air domain, inter-agent communication is
carried out over radios. The generic radio inter-
face of ModSAF? provides an implementation of
this form of communication. Matural language
character strings are sent in DIS Radio PDUs.
Messages are generated by Soar as lists of WMEs
(one per word) which are then turned into charac-
ter strings by the SMI and passed to the ModSAF
radio.

Soar and ModSAF do conflict in one area.
ModSAF is a distributed simulation which causes
problems when agents are created on separate
hosts. When an agent is created, a user inter-
face is created for that agent, whether it be a new
X window or a new I/O stream interleaved onto
standard input/output (used by the Soar Devel-
opment Environment (SDE) [SDE]). This is no
problem when one ModSAF is running on a lo-
cal host. However, if more than one ModSAF is
running and ModSAF’s load balancing is active,
then locally created agents will be simulated on
remote hosts and their user interface will appear
remotely. Fortunately, there are simple methods

2The generic radio library was added to ModSAF

_in version 1.0. Prior to this, interagent communica-

75

tion was performed using Message PDUs that were
generated and interpreted by the SMI but sent and
received by ModSAF

for forcing agents to remain on a local host. In the
long term, it would be useful to find a method for
allowing load balancing without interfering wita
the placement of the user interface. A more diffi-
cult issue in regards to load balancing is the mov-
ing of complex reasoning agents, such as the ones
built in Soar. There is no simple mechanism to
transfer both the complex reasoning state and the
knowledge used in that reasoning to another ma-
chine, while the agent is interacting in the simu-
lated world.

Implementation Details

The SMI must honor several design constraints.
Although the primary focus is on the automated
pilot which controls a single aircraft, there may
be additional agents associated with a vehicle. A
fighter aircraft may have a Radar Intercept Of-
ficer (RIO) and an Air Intercept Control (AIC)
aircraft may have air controllers. Any of these
agents may be created or destroyed at any point
in the simulation; there is no preset scenario.

An arbitrary number of agents may exist in the
Soar system and an arbitrary number of vehicles
may exist in ModSAF. Not all of these vehicles
may be controlled by Soar agents. Some agents
may be controlled by other software modules or
even by humans. The number of such entities is
limited only by the processing speed and memory
capacity of the host workstation. The SMI must
be efficient so that the performance of Soar and
ModSAF do not degrade due to excessive commu-
nication overhead between agents and their vehi-
cles.

There are also implementation constraints on
the SMI. Both Soar and ModSAF are designed
as standalone systems and continue t~ e ongo-
ing development. The SMI must enable new ver-
sions of Soar and ModSAF to be incorporated.
The Soar system is already implemented with a
number of hook functions and configurable sub-
systems. Some of these facilities were generalized
to work more effectively with external systenis
such as ModSAF, but no changes were needed to
the Soar system releases. All SMI functionality
is incorporated through Soar’s extensible mecha-
nisins. The SMI redefines Soar’s scheduling com-
mand since ModSAF is in charge of scheduling,
and adds a number of commands useful in the
air combat domain. The SMI also adds a set of
domain-specific right-hand side functions used in
Soar productions.

ModSAF is also designed with modularity as
an important goal. Hence, only one library out of
over 100 was modified to incorporate Soar and the
SMI. In this library, the SMI is implemented as
a software layer connected to ModSAF at a level
dealing with the aircraft vehicle simulation. The
SMI calls upon a number of ModSAF libraries to

76

help create the simulated cockpit. The ModSAF
main program an. few additional libraries re-
quired minor addit as to accommodate the SMI
but their primary functionality was not altered.

ModSAF uses Motif and X far its graphical user
interface (GUI) as well as standard input/output
for its command line interpreter. Soar, which pre-
viously depended on standard input/output, was
enhanced to include an X interface. This enabled
Soar, ModSAF, and the SMI to present GUlIs to
the user while maintaining module independence.
Each module opens a separate display connection
to the user’s console and receives a separate event
stream. This design has the drawback that there
is contention for screen real-estate due to a pro-
liferation of separate windows.

The SMI GUI enables the user to control the
simulation speed. This is helpful for speeding up
the simulation in “dead spots” or slowing down
the simulation to observe at a finer grain the
changes in state. Additions to the SMI GUI are
planned and will provide more dynamic control
over ModSAF and the SMI. In addition to the
SMI GUI, the ModSAF GUI was enhanced by
adding two windows. The first provides ortho-
graphic projections of the PVD so that altitude
relationships between vehicles may be depicted
graphically. This window was augmented to pro-
vide some other desireable features missing from
the ModSAF PVD: snail trails and radar volumes.
Snail trails depict a history of vehicle positions
over time by using a series of dots. The radar
volumes are shown as fans indicating radar orien-
tation, beam height, and beam width. The sec-
ond window presents vehicle status information
that is continually updated to clarify the status
of vehicle position, orientation, radar sightings,
and weapon employment.

An alternative interface to Soar was devel-
oped independently which utilizes standard in-
put/output. This interface, the SDE, runs in
Emacs. It removes the need for separate win-
dows for Scar agents but forces the elimination
of the ModSAF command line interpreter. Both
Soar interfaces have their uses and Soar develop-
ers have not fully committied to one or the other. |

Conclusion

The problem of connecting Soar to ModSAF
has brought some interesting technical challenges.
The challenges have helped the Soar system devel-
opers to generalize Soar’s extension mechanisms
enabling all Soar users to benefit. And the Mod-
SAF environment has been an effective tool en-
abling Soar agent developers to focus more closely
on modeling human pilots.

Acknowledgements

This research was supported under subcontract
to the University of Southern California Infor-
mation Sciences Institute from the University
of Michigan, as part of contract N00014-92-K-
2015 from the Advanced Systems Technology Of-
fice (ASTO) of the Advanced Research Projects
Agency (ARPA) and the Naval Research Lab-
oratory (NRL). Critical support has been pro-
vided by Dennis McBride of ARPA/ASTO; Tom
Brandt, Bob Richards, and Ed Harvey of BMH
Inc.; and Andy Ceranowicz and Joshua Smith of
Loral Inc.

References

{ModSAF] R. Calder, J. Smith, A. Courte-
manche, J. Mar, A. Ceranowicz (1993). ModSAF
behavior simulation and control. In Proceedings
of the Third Conference on Compuler Generated
Forces and Behavioral Representation. Univ. of
Central FL, IST-TR-93-07.

[Soar] P. Rosenbloom, J. Laird, A. Newell (Eds.)
(1993). The Soar Papers: Research on Integrated
Intelligence. Cambridge, MA: MIT Press.

[TacAir] R. Jones, M. Tambe, J. Laird, P. Rosen-
bloom (1993). Intelligent automated agents for
flight training simulators. In Proceedings of the
Third Conference on Computer Generated Forces
and Behavioral Representation. Univ. of Central

FL, IST-TR-93-07.

[SDE] Michael Hucka (March 1994). The Soar
Development Environment: User’s Manual. Arti-
ficial Intelligence Laboratlory, University of Michi-
gan, unpublished manuscript.

[SoarSIM] Robert H. Guttman and Scott B. Hufl-
man (June 1992). SoarSIM: A Soar Simulation-
Building Tool (version 1.1 user’s manual). Artifi-
cial Intelligence Laboratory, University of Michi-
gan, unpublished manuscript.

Biographies

Karl B. Schwamb is a Senior Programmer An-
alyst on the Soar Intelligent FORces project at
the University of Southern California’s Informa-
tion Sciences Institute. He is primarily respon-
sible for the maintenance of the Soar/ModSAF
interface software described in this article. He re-
ceived his M.S. in Computer Science from George
Washington University.

Frank Vincent Koss is a Systems Research Pro-
gramnier in the Artificial Intelligence Laboratory
at the University of Michigan, where he is devel-
oping the interface between the Soar architecture
and the ModSAF simulator. He received his BS in
computer engineering from Carnegie Mellon Uni-
versity in 1991 and his MSE in computer science

77

and engineering from the University of Michigan
in 1993. He is a member of IEEE and AAAL.

Dave Keirseyis a member of the senior staff, com-
puter science in the Informaton Science Labo-
ratory at Hughes Research Laboratories, where
he is has been involved in the development of
behavior-based methods for autonomous systems
for both real and simulated environments. He
received his PhD in computer science from Uni-
versity of California, Irvine in 1983.

Building Believable Agents for Simulation Environments:
Extended Abstract

Milind Tambe®, Randolph M. Jones**, John E. Laird**, Paul S. Rosenbloom®, Karl Schwamb®

* Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, CA 90292
email: {tambe, rosenbloom, schwamb} @isi.edu

** Artificial Intelligence Laboratory
University of Michigan
120 ATL Building
1101 Beal Ave
Ann Arbor, MI 48109
email: {rjones,laird } @eecs.umich.edu

1. Introduction

The goal of our research effort is to develop
generic technology for intelligent automated
agents in simulation environments. These agents
are to behave believably like humans in these
environments. In this context, believability
refers to the indistinguishability of these agents
from humans, given the task being performed,
its scope, and the allowable mode(s) of
interaction during task performance. For
instance, for a given simulation task, one
allowable mode of interaction with an agent may
be typewritten questions and answers on a
limited subject matter. Alternatively, a different
allowable mode of interaction for the same (or
different) task may be speech rather than
typewritten words. In all these cases,
believability implies that the agent must be
indistinguishable from a human, given the
particular mode of interaction. Such an agent
technology can potentially provide virtual
humans for the multitude of virtual reality
environments under construction. Its
applications can be found in many fields,
including entertainment (1], education [5,
chapter 3], and training [2].

To begin this effort, we have focused on
creating specific automated agents for simulated
tactical air combat. The automated agents act as
the virtual pilots for simulated aircraft, and will
participate in exercises with real Navy pilots.
These exercises will aid in training Navy pilots,

development of tactics, and evaluation of
proposed hardware. This is a non-trivial task,
with many real-world complexities, and as such
it offers several advantages. It pushes research
based on real-world needs on topics such as
reactivity, real-time reasoning, planning,
episodic memory, agent modeling, temporal
reasoning, explanation, and natural language
understanding/generation. Furthermore, it
forces the integration of all of these component
Al technologies, because it requires a single
automated agent to perform all of the functions
performed by a pilot in air combat.
Simultaneously, however, as a simulation task, it
delimits the component technologies to be
integrated. For example, it does not force the
integration of vision or locomotion components.
Finally, the task also imposes external metrics
for success.

The task also poses an important constraint:
the automated agents must believably act and
react like trained human pilots. These agents are
to take part in exercises with other human pilots.
If human trainees identify our agents as
automated pilots, they may take advantage of
specific known characteristics of their behavior.
Training in such a situation could actually be
harmful. For instance, if the automated agents
do not react as quickly as other human pilots (or
react too quickly), trainees may learn to act too
aggressively (or not aggressively enough) in a
real aerial combat. Additionally, if the agents

78

behave unrealistically, observers and tacticians
at “ground control" (who can watch the
simulated combat from different perspectives),
may nat be able to develop realistic tactics and
strategies.

Thus, this task requires the development of
believable automated pilots. For this fixed task,
believability refers to the indistinguishability of
the automated pilot from a human pilot, given
the scope of the task, and the allowable modes
of interaction. The scope of the task depends on
(at least) the number of aircraft involved on each
side, e.g., whether it is a one "friendly” aircraft
versus one “enemy" aircraft (1vl) air-combat
situation, or a 2vl, or 2vN situation. The
allowable modes of interaction depend on
whether it is a Beyond Visual Range (BVR)
combat situation, where pilots only get radar
information about the enemy aircraft, or Within
Visual Range (WVR) combat situation, where
the pilots can also directly see the enemy
aircraft. In 2vl (or 2vN) combat situations,
additional modes of interaction are possible: the
pilots of two or more "friendly" aircraft may
communicate via radios, electronic data links, or
even by executing simple maneuvers. A human
observer at "ground control" adds even more
modes of interaction. He/she can observe the
combat in progress on a TV monitor, zoom in
and out on it, focus on the maneuvers of a
particular aircraft, and so on. A passive observer
can only observe the combat in progress, while
an active observer can supply the pilots new
information or commands over the radio.

The specific scope of the task, together with
the choice of certain modes of interaction,
dictates the capabilities an agent must possess
for believability. These capabilities define a
certain level of believability. If the agent
possesses these capabilities, then we refer to it as
having (or being at) this level of believability.
For instance, consider a 1vl BVR air-combat
situation, with no observers, and with a single
human pilot engaged in combat with a single
automated agent. The only mode of interaction
is what the human pilot can view of the
automated agent’s actions on its radar. The
capabilities required for believability are that
these actions must appear like those of a trained
human pilot. An agent with these capabilities
has a certain (moderate) level of believability.
Suppose we add a passive observer to this

situation. Since the observer can watch the
automated agent’s actions much more closely,
the agent must have a higher level of
believability. As we add more aircraft, an active
observer, and switch to WVR, the agent must
have even higher levels of believability, with
requirements for capabilities such as natural
language (and speech) understanding/generation
to support different types of radio
communication.

The levels of believability provide us a means
of staging an attack on this problem (and
correspondingly staging the system development
effort). Thus, to begin this effort, we have
focused on an agent at a moderate level of
believability: an agent for 1vl BVR air-combat,
with a passive observer. Even at this level, the
task remains highly knowledge- and capability-
intensive. Trained Navy pilots possess vast
knowledge about different mission types, tactics
and maneuvers, performance characteristics of
the aircraft, radar modes, missile types and so
on. The challenge for constructing an automated
agent is then to integrate this knowledge into a
single system, along with the following
capabilities:

1. The agent must be extremely flexible in its
behavior: Situations in air combat can
change very rapidly. Unexpected events
can occur, e.g., an on-target missile may
fail to explode, or an aggressive adversary
may engage in some preemptive action
disrupting an ongoing maneuver.
Accordingly, the agent must respond
flexibly to the evolving situation.

2.The agen: must act/react in real-time:
Since a human may be interacting with the
agent in real-time, the agent must act/react
in real-time as well.

3. The agent must try to interleave multiple
high-level goals: For this task, the agent
must continuously attend to at least three
high-level goals: (a) executing maneuvers
to destroy the opponent; (b) surviving
opponents’ weapon firings; and (c)
interpreting opponents’ actions. Given the
need for real-time response, the agent must
be capable of rapidly switching among
these goals (or achieving them in parallel).

4. The agent must conform to human reaction
times and other human limitations: As

79

discussed earlier, the agent must not react
to input data faster (or slower) than a
human pilot would. The agent must also not
maneuver the simulated aircraft like a
“superhuman”, e.g., it must not make very
sharp tumns. Finally, the agent must exhibit
some unpredictability in its behavior, when
appropriate.

5. Others: Some other capabilities such as
planning, temporal reasoning, are also
required for this task in limited proportions.

Note that, because a passive observer can
watch an automated agent more closely than
what is visible on radar, this additional level of
believability requires more accurate modeling of
human reaction time and physical limitations.

2. Developing Believable Pilot Agents

The basis of our work on developing
automated agents is the Soar integrated
architecture [4, 6] (Due to space constraints, we
will assume that the reader has some familiarity
with the Soar architecture). Some of the
characteristics of this task are particularly well-
suited for Soar. First, Soar is a single unified
architecture for the research, development and
integration of various component Al
technologies. Second, Soar represents a
developing unified theory of cognition, which is
advantageous, given the constraint of
psychological verisimilitude (e.g., limitation on
reaction time) in this task.

The automated pilots for the 1vl BVR air-
combat task are based on TacAir-Soar, a system
developed within the Soar architecture, which
cumrently includes about 1100 productions.
TacAir-Soar encodes the basic task knowledge
for an agent in a set of problem spaces. A
particular automated agent is realized by
initializing TacAir-Soar with a specific set of
parameters, such as its mission, the level of nisk
it can take for the mission, and the kind of
weapons it has available.

The current design of TacAir-Soar is guided
by two sets of constraints: the task requirements
(as specified by the targeted level of
believability), and the Soar architecture itself.
Consider the key requirement of flexibility of
behavior. This has turned out to be a strong
constraint on the design of problem spaces and

operators. For instance, any maneuver
consisting of a sequence of actions is
implemented not as a single monolithic plan, but
rather as a sequence of appropriately
conditioned operators in a problem-space. This
allows TacAir-Soar to respond flexibly to an
evolving situation, and not remain rigidly
committed to a specific plan. Furthermore, this
constraint discourages highly specific, narrowly
focused problem spaces. For instance, a
problem space devoted solely to employing one
type of missile may not allow the system to
switch quickly to employing a different type of
missile, as the situation rapidly evolves. In
contrast, a problem space that combines the
operators for employing different types of
missiles facilitates such actions.

TacAir-Soar’s highly reactive behavior
derives at least in part from Soar’s ability to
react at a number of different levels [3).
Specifically, Soar can respond to new inputs at
three levels: (i) in a single production firing, (ii)
in a single decision, which involves firing
multiple productions, or (iii) in a problem-space,
which involves executing multiple decisions.
Thus, as the situation changes, Soar can respond
very quickly within the time-span of a single
production firing. If needed, it may also respond
after much deliberation in a problem space.
Additionally, Soar’s efficient implementation
technology plays a large role in allowing it to
respond in real time.

In achieving multiple high-level goals,
TacAir-Soar faces an interesting issue: as
limited by the Soar architecture, it cannot
construct multiple goal/problem-space
hierarchies (in parallel) in service of the high-
level goals. TacAir-Soar can and does construct
a goal hierarchy in an attempt to achieve the
high-level goal of destroying the opponent. For
instance, to achieve the goal of destroying the
opponent it creates a subgoal to "desiroy-with-
missile”. To achieve destroy-with-missile, it
generates subgoals to get into missile firing
range, and so on. However, TacAir-Soar cannot
construct goal-hierarchies for its remaining high-
level goals — survival and interpretation of
opponent actions — in parallel. To address this
limitation, TacAir-Soar opportunistically installs
operators for these high-level goals into its
existing goal hierarchy (without eliminating the
hierarchy). This avoids the overhead of

80

rebuilding the goal hierarchy, while allowing it
to switch attention among different types of
goals rapidly. While this solutior. has allowed
TacAir-Soar to exhibit reasonable performance
so far, it does have some disadvantages. First, by
not representing the different -goal hierarchies
explicitly, the solution does hinder TacAir-
Soar’s ability to reason about the interactions
between multiple goals. Second, it is unclear if
the scheme will generalize beyond the targeted
level of believability. For instance, it is unclear
if patural language understanding/generation
will fit into this scheme. Altemative solutions
are currently under investigation.

TacAir-Soar’s ability to adhere to human
reaction times is hindered by the artificiality of
the interface to the simulation environment. In
particular, TacAir-Soar does not spend time
physically manipulating different instruments
(e.g., tuming a knob), or decoding actual
instrument displays (e.g., decoding radar
displays). As a result, TacAir-Soar tends to react
faster than human pilots in some situations.
Therefore, deliberate delays have been set up to
slow down some of TacAir-Soar’s responses.
Similarly, TacAir-Soar’s turning maneuvers
have been constrained so as not to exceed
human capability. As for unpredictability, much
of it occurs “naturally” in TacAir-Soar. In
particular, while two complex situations may
appear very similar to a human observer, they
may be quite different from TacAir-Soar’s
perspective, leading TacAir-Soar to two
different actions. To add to this unpredictability,
TacAir-Soar does random selection among
operators that are considered to be equally
appropriate in a given situation.

3. Current Status and Future Plans

Currently, even with approximately 1100
productions, the TacAir-Soar system continues
to perform well within real-time constraints:
Agents based on TacAir-Soar are fairly capable
and robust within a narrow range of missions for
1vl BVR combat. Recently, in a demonstration
organized for Navy personnel, these agents were
tested against (constrained) human pilots. The
demonstration was a success in that the agents
were able to function adequately at this targeted
level of believability, i.e., they were able to react
realistically to the humans pilots.

We are currently extending TacAir-Soar o
deal with co-ordinated multi-aircraft air-combat
simulations. Essentially, we are extending
TacAir-Soar agents to higher levels of
believability, and hence need integration of
capabilities such as natural language
understanding/generation. Thus, so far, for this
task, the levels of believability appear to be
useful as a means of staging development, as
well as for measuring believability. Whether this
usefulness will continue in the future, or for
other tasks, remains to be seen.

References

1. Bates, J,, Loyall, A. B, and Reilly, W. S.
Integrating reactivity, goals and emotions in a
broad agent. Tech. Rept. CMU-CS-92-142,
School of Computer Science, Carnegie Mellon
University, May, 1992.

2. Jones, R. M., Tambe, M., Laird, J. E., and
Rosenbloom, P. Intelligent automated agents for
flight training simulators. Proceedings of the
Third Conference on Computer Generated
Forces and Behavioral Representation, March,
1993.

3. Laird, J.E. and Rosenbloom, P.S. Integrating
execution, planning, and leamming in Soar for
external environments. Proceedings of the
National Conference on Artificial Intelligence,
July, 1990.

4. Laird, J. E., Newell, A. and Rosenbloom,
P.S. "Soar: An architecture for general
intelligence". Artificial Intelligence 33, |
(1987), 1-64.

5. Moravec, H. Mind Children. Harvard
University Press, Cambridge, Massachusetts,
1990.

6. Rosenbloom, P. S., Laird, 1. E., Newell, A.,
and McCarl, R. “A preliminary analysis of the
Soar architecture as a basis for general
int:lligence”. Artificial Intelligence 47, 1-3
(1991), 289-325.

81

Event Tracking in Complex Multi-agent Environments

Milind Tambe and Paul S. Rosenbloom
Information Sciences Institute
University of Southern California
4676 Admiraity Way
Marina del Rey, CA 90292
email: {tambe, rosenbloom} @isi.edu

Abstract

The Soar-IFOR project is aimed at developing
intelligent automated pilots for simulated tactical
air-combat. One key requirement for an automated
pilot in this environment is event tracking: the
ability to monitor or track events instigated by
opponents, so as to respond to them appropriately.
These events include the opponents’ low level
actions, which the automated pilot may directly
observe, as well as opponents’ high level plans and
actions, which the automated pilot can not observe
(but only infer). This paper analyzes the challenges
that an automated pilots must face when tracking
events in this environment. This analysis reveals
some novel constraints on event tracking that arise
from the dynamic multi-agent interactions in this
environment. In previous work on event tracking,
which is primarily based on single-agent
environments, these constraints have not been
addressed. This paper proposes one solution for
event tracking that appears better suited for
addressing these constraints. The solution is
demonstrated via a simple re-implementation of an
existing automated pilot agent for air-combat
simulation’.

1. Introduction

The Soar-IFOR project is aimed at developing
intelligent automated pilots for simulated tactical
air-combat environments [11, 17]. These
automated pilots are intended to participate in
large-scale exercises with a variety of human
participants, including human fighter pilots. These
exercises are to be used for training as well as for
development of tactics. To participate in such

"This research was supported under subcontract to the
University of Southern California Information Sciences Institute
from the University of Michigan, as part of contract NO0014-92-
K-2015 from the Advanced Systems Technology Office (ASTO)
of the Advanced Research Projects Agency (ARPA) and the
Naval Research Laboratory (NRL). Critical support has been
provided by Dennis McBride of ARPA/ASTO; and Tom Bran t,
Bob Richards, and Ed Harvey of BMH Inc.

exercises, the automated pilots must act in a
realistic manner, i.e., like trained human pilots.
Otherwise, both the training and tactics
development in these environments will not be
realistic.

To act in a realistic manner, an automated pilot
must, among other things, be responsive to events
in its environment — it must modify and adapt its
own maneuvers in response to relevant events.
These events may correspond to simple actions of
other pilots, such as changes in heading or altitude,
which the automated pilot may directly observe on
its radar. Altematively, these events may involve
the execution of complex, high-level actions or
plans of other pilots, which the automated pilot can
not directly observe. For instance, one crucial
event is an opponent’s firing a missile at an
automated pilot’s aircraft, threatening its very
survival. Yet, the automated pilot cannot directly
see the missile until it is too late to evade it.
Fortunately, the automated pilot can monitor the
opponent’s sequence of maneuvers, and infer the
possibility of a missile firing based on them, as
shown in Figure 1. The automated pilot is in the
dark-shaded aircraft, and its opponent is in the
light-shaded one.

d | KT K

@ ®) ©

v SRR A K e

(@) (@

Figure 1: Manuevers of the automated pilot (in dark-shaded
aircraft) and its opponent (in light-shaded one).

Suppose that initially the two aircraft are headed
right toward each other as shown in Figure 1-a.
The range (distance) between the two aircraft is

82

more than 10-15 miles, so they can only see each
other on radar. This range is slightly short of the
range from which the opponent can fire a radar-
guided missile at the automated pilot’s aircraft.
However, the opponent is already well-positioned
to fire this missile once its range is reached. In
particular, given that the two aircraft are pointing
right at each other, the opponent’s aircraft is at
attack heading (a point slightly in front of the
automated agent’s aircraft, as shown by a small x
in the figure). At this juncture, the automated pilot
tums its aircraft as shown in Figure 1-b. Given that
the opponent wants to fire a missile, she tumns her
aircraft in response to re-orient it to attack heading
(Figure 1-c). In this situation, she reaches her
missile firing range, and fires a missile (shown by
-). While the automated agent cannot observe this
missile, based on the opponent’s turn it can infer
that the opponent may be attempting to achieve
attack heading as part of her missile firing
behavior. Unfortunately, at this point, it cannot be
certain about the opponent’s missile firing, at least
not to an extent where trained fighter pilots would
infer a missile firing. However, if the opponent
subsequently engages in an Fpole maneuver then
that considerably increases the likelihood of a
missile firing (Figure 1-d). This maneuver
involves a 25-50 degree turn away from the attack
heading (it is executed after firing a missile to
provide radar guidance to the missile, while
reducing the closure between the two aircraft).
While at this point the opponent’s missile firing is
still not an absolute certainty, its likelihood is high
enough, so that trained fighter pilots assume the
worst, and react as though a missile has actually
been fired. The automated pilot reacts in a similar
manner, by engaging in a missile-evasion
maneuver. This involves turning the aircraft
roughly perpendicular to the missile-flight (Figure
1-¢), which causes the aircraft to “drop-off”
(become invisible to) the opponent’s radar.
Deprived of radar guidance, the opponent’s missile
is rendered harmless.

The above example illustrates that an automated
pilot needs to continually monitor a variety of
events in its environment, such as the opponent’s
turns and her (inferred) missile-firing behavior, so
as to react to them appropriately. We refer to this
capability as event tracking. Here, an event may be
considered as any coherent activity over an
interval of time. An event is similar to a process in
qualitative process theory [8], as something that
acts through time to change the parameters of
objects in a situation. This event may be a low-
level action, such as an agent’s Fpole tum, or it
may be a high-level behavior, such as its missile-

firing behavior, which consists of a sequence of
such turns. The event may be internal to an agent,
such as maintaining a goal or executing a plan, or
external to it, such as executing an action. The
event may be instigated by any of the agents in the
environment, including the agent tracking the
events, or by none of them (e.g., a lightning bolt).
The event may be observed by an agent, perhaps
on radar, or it may be unobserved, but inferred.
Tracking any one of these events refers to
recording it in memory and monitoring its progress
as long as necessary to take appropriate action in
response to it. Tracking an event also includes the
ability to infer the occurrence of that event from
other events.

Event tracking is closely related to the problem
of plan recognition [12], the process of inferring an
agent’s plan based on observations of the agent's
actions. The term event tracking is preferred in
this investigation, since it also involves events
other than plans, and since it is a continuous on-
going activity. However, more important than the
terminology, of course, is gaining a better
understanding of the nature of this capability. In
particular, does the realistic multi-agent setting of
air-combat simulation reveal anything new about
event tracking? Given the complexity of this
domain, answering this question in its entirety is
beyond the scope of this single investigation.
However, this paper takes a first step by focusing
on events relating to the actions and behaviors of
one or two opponents as they confront the
automated pilot. Section 2 illustrates that even
within this restricted context, the air-combat
domain brings forth some novel constraints on
event tracking. Following this, Section 3 presents
one approach that we have been investigating to
address these constraints. The key idea in this
solution is a basic shift in the agent’s reasoning
framework: from the usual agent-centric to world-
centric. Finally, Section 4 presents a summary and
issues for future work.

2. Event Tracking in Air-Combat -

Simulation

The primary constraint on event tracking in air-
combat simulation arises from the fact that this is a
dynamic environment, where agents continually
interact. This continuous interaction implies that
the agents cannot rigidly commit to performing a
fixed sequence of actions. Instead, they need high
behavioral flexibility and reactivity in order to
achieve their goals. For instance, in Figure 1-c, the
opponent has to re-orient herself to a new attack
heading in response to the automated pilot’s turn in

83

Figure 1-b. If the automated pilot had tumed in
the opposite direction, so would have the
opponent. A more complex interaction occurs in
Figure l-e, where the automated pilot’s missile
evasion maneuver is a response to the opponent’s
overall maneuvers in Figures 1-c and 1-d, which
are identified as part of her missile firing behavior.

These types of agent interactions extend well
beyond situations involving just two aircraft. For
instance, consider a situation where there are two
opponents attacking the automated pilot's aircréft,
as shown in Figure 2-a. Again, the automated pilot
is in the dark-shaded aircraft, and the opponents
are in the light-shaded aircraft. These opponents
may either closely co-ordinate their attack or they
may attack independently. One method of close
co-ordination in the opponent’s attack is shown in
Figure 2-b. Here, the opponent closer to the
automated pilot’s aircraft (the lead) leads the
attack, while the second opponent, marked with x
(the wingman) just stays close to the lead, and
follows her commands. Thus, as the lead turns to
gain positional advantage, the wingman needs to
turn in that direction as well, so as to fly in
formation with the lead, all the while making sure
that she does not get in between the lead and the
automated pilot’s aircraft. Another method of close
co-ordination is shown in Figure 2-c. Here, the
opponents execute a coordinated pincer maneuver
— as the lead turns in one direction, the wingman
tums in the opposite direction, so as to confuse the
automated pilot and attack it from two sides.
There are other possibilities of co-ordinating the
attack as well. Of course, the opponents may not
co-ordinate their attack. They may instead try to
gain positional advantage in the combat
independently of each other, and attack
independently. In all these situations, all three
aircraft continually influence each other’s actions
and behaviors in different ways. If other aircraft
are involved in the combat — for instance, if the
automated pilot is coordinating its attack with a
friendly aircraft — then they also interact with the
other aircraft involved in the combat.

This dynamic interaction among the agents leads
to the primary constraint on event tracking in this
domain: an agent must be able to track highly
flexible and reactive behaviors of its opponent. In
so doing, the agent must take the appropriate agent
interaction into account. Without an understanding
of this interaction, an opponent’s action may lead
to unuseful or even misleading interpretation. For
instance, the opponent’s turn in Figure 1-c needs to
be tracked as a response to the automated pilot’s
own turn in Figure 1-b. Otherwise, that turn may
appear meaningless. Similarly, as shown in Figure

@)

X\
.
i Y *

®) ©

Figure 2: Agent interactions: (a) two opponents attacking
the automated pilot’s aircraft; (b) opponents stay
close; (c) opponents stage a co-ordinated “pincer”.

2, the wingman may mainly be reacting to its
lead’s turns, or she may be reacting to the
automated pilot’s aircraft independently.
Understanding this interaction is important in
tracking the wingman’s actions.

A second related constraint here is that event-
tracking must occur in real-time and must not
hinder an agent from acting in real-time. For
instance, in Figure 1, if the automated pilot does
not track the missile firing event in real-time or
does not react to it in real-time, the results could be
fatal.

The third constraint on event tracking is that
agents must be able to expect the occurrence of
unseen, but on-going events. This constraint arises
from the weakness of the sensors in this domain —
an agent must sometimes track opponent’s actions
even though they are not visible on radar. For
instance, suppose in the situation in Figure 2-c, the
automated pilot concentrates its attack on the lead,
and as a result the wingman (marked with x) drops
off the automated pilot’s radar. Here, given that the
opponents are inferred to be executing a pincer
maneuver, even though the wingman drops off the
radar, some expectation about her position can be
developed. Thus, the automated pilot can re-orient
its radar and reset its mode to re-establish radar
contact with the wingman if there is a need to do
so later during the combat.

The fourth and final constraint on event tracking
is that it is not a one-shot recognition task. Instead,
it occurs on a continual basis, at least as long as it
is relevant to the agent’s achievement of its goals
(such as the completion of its mission).

Thus, this domain poses a challenging
combination of constraints for event tracking. The
most novel constraint here is the first one. In
previous investigations in the related areas of
plan/situation recognition [12, 16,6, 18,3] —
including one investigation focused on plan

recognition in airborne tactical decision making (2]
— this constraint has not been addressed. In
particular, plan recognition models have not been
applied in such dynamic, interactive multi-agent
situations, and hence do not address strong
interactions among agents and the resulting
flexibility and reactivity in agent behaviors. In
particular, these models assume that a single
planning agent (or multiple independent planning
agents) has some plans, and a recognizing agent
recognizes these plans. The planning agent may be
cither actively cooperative (it intends for its plans
to be recognized by the recognizing agent) or
passive (it is unconcemed about its plans being
recognized) [4). The recognizing agent’s job is to
recognize these plans and possibly provide a
helpful response. However, neither the recognizing
agent, nor any other agents in the environment are
assumed to have any influence on these plans.
Consequently, these plan recognition models can
rely on pre-compiled plan libraries, where each
plan lists the sequence of events and the temporal
relationships among the events [16]. However,
such lists cannot be employed in tracking highly
flexible and reactive agent behaviors. In particular,
all possible variations on agent behaviors would
need to be included in such lists, leading to a
combinatorial explosion®in the number of plans
(unless a highly expressive plan language is
developed).

Grosz and Sidner [9], in their work on discourse
situations, attempt to partly address the above
constraint on event tracking. They focus on what
they characterize as the “master-slave” relationship
between the planning agent and the recognizing
agent assumed in plan-recognition models, and
attempt to remedy it by using shared plans.
Agents in their discourse situations arrive at a
shared plan by establishing mutual beliefs and
intentions about things such as their role in
executing the plan. However, their discourse
situations involve agents that are actively
cooperative, while agents in air-combat simulation
range from actively co-operative to passive to
actively un-cooperative. i

Interestingly, while plan-recognition systems
have not dealt with such dynamic multi-agent
situations, Distributed AI (DAI) systems, which
have dealt with such situations, have not addressed
the problem of plan recognition. There is some
work in DAI on understanding other agents’
plans [7). However, it focuses on agents
exchanging their plan data structures for active
cooperation, rather than on plan recognition. Thus,
the first constraint actually appears to give rise to a
novel issue intersecting the areas of plan-

recognition and DAI.

The remaining three constraints on event
tracking — real-time performance, expectations
and continuous tracking — have been addressed in
previous research (e.g., in [6]). The next section
presents an approach that we have been
investigating for event tracking that addresses all
four constraints outlined above.

3. Towards a Solution for Event

Tracking

The key idea in the proposed solution for event
tracking is based on the following observation. All
of the agents in this environment possess similar
types of knowledge, they have similar goals, and
similar levels of flexibility and reactivity in their
behaviors. In particular, an automated pilot ageat
that requires the capability to track events shares
these similarities with its opponent. Thus, the key
idea is that all the knowledge and implementation
level mechanisms that the automated pilot agent
uses in generating its own flexible behaviors may
be used in service of tracking flexible behaviors of
other agents.

To understand this idea in detail, it is first useful
to understand how an ageat generates its own
flexible and reactive behaviors. Section 3.1
explains this by focusing on an automated pilot
agent A, and its flexibility and reactivity. Section
3.2 then illustrates how A may exploit this for
tracking other agent’s behaviors. Section 3.3
outlines the issues that arise in such an endeavor.
Finally, Section 3.4 presents a simple re-
implementation of an existing pilot agent based on
the ideas presented in this section.

Note that while the solution presented here
originated with the observation of similarity
among agents, it is not necessarily limited to only
those situations. For instance, it is possible that
even though the other pilot agents may possess
similar levels of flexibility and reactivity, they may
be constrained in their behavior by their doctrine.
To track these types of constrained behaviors, A
would need to use similar types of doctrine-based
constraints in tracking behaviors of other agents.

3.1. An Agent’s Own Behavior

This section illustrates how an automated pilot
agent A generates flexible and reactive behavior.
This illustration is provided using a concrete
implementation of A in Soar [11, 17]. Soar is an
integrated problem-solving and learning
architecture that is already well-reported in the

85

literature [14, 15). The description below abstracts
away from many of the details of this
implementation, and mainly focuses on Soar’s
problem space model of problem-solving. Very
briefly, a problem space consist of states and
operators. An agent solves problems in a problem
space by taking steps through the problem space to
reach a goal. A step in a problem space usually
involves applying an operator in the problem space
to a state. This operator application changes the
state. If the changes are what are expected from the
operator application, then that operator application
is terminated, and a new operator is applied. If the
operator does not change the state, or if the
changes it causes do not meet the expectatiors,
then a subgoal is created. A new problem space is
installed in the subgoal to attempt to achieve the
expected effects of the operator. (Note that the
system uses a procedural representation for these
operator expectations — a declarative
representation is not necessary. In particular, a
procedural representation is sufficient to determine
if the expectations are achieved.)

Figure 3 illustrates the problem spaces and
operators A, employs while it is trying to get into
position to fire a missile. In the figure, preblem
spaces are indicated with bold letters, and
operators being applied in italics. In some problem
spaces, alternative operators are also shown (these
are not italicized). In the top-most problem space,
named TOP-PS, A, is attempting to execute its
mission by applying the execute-mission operator.
This is the only operator it has in this problem
space. The expected effect of this operator is the
compl-tion of A 's mission, which may be for
example to protect its aircraft carrier. Since this
expected effect is not yet achieved, a subgoal is
generated to complete the application of
execute-mission. This subgoal involves the
EXECUTE-MISSION problem-space. There are
various operators available in this problem space
to execute A ’s mission, including intercepr (to
intercept an attacking opponent), fly-racetrack (to
fly in a racetrack pattern searching for opponents
when none is present), etc. In fact, in most of A;’s
problem spaces there are always several such
options available, and A, has to select a particular
operator that would allow it to make the most
progress. In this case, A, selects the intercept
operator so as to intercept the opponent’s aircraft.
Given the presence of the opponent, this is the best
option available.

A, attempts to apply the intercept operator.

However, the expected effect of this operator —
the opponent is either destroyed or chased away —

- TvoP-ps
" execute-mission | TOP

EXECUTE-MISSION

[empLoy-missie | INTERCEPT
| CHASE-OPPONENT

| GET-MISSILE-LAR
| FINAL-MISLE-MANVER

EMPLOY-MISSILE

© ACHIEVE-PROXIMITY| GET-MISSILE-LAR
! CUT-TOALS i
L |

— ——IDESIRED-MANEUVER
! START-TURN :

l STOP-TURN {

Figure 3: A 's problem space/operator hierarchy. Boxes
indicate problem spaces. Text in italics indicates
currently active operator within a problem space.

is not directly achieved. This leads to a subgoal
into the intercept problem space, where A,
attempts to apply the employ-missile operator.
However, the missile firing range and position is
not yet reached. Therefore, A subgoals into the
EMPLOY-MISSILE problem space, and applies
the ger-missile-lar operator. (LAR stands for
launch-acceptability-region, the position for A to
fire a missile at its opponent). The ger-missile-lar
operator results in the application of the
achieve-proximity operator in a subgoal. Finally,
this leads to a subgoal into the start-turn operator
in the DESIRED-MANEUVER problem space.
The application of this start-turn operator causes
A to tumn. Another operator — stop-turn — will
be applied to stop the aircraft’s turn when it
reaches a particular heading (called collision-
course). This heading will be maintained until
missile firing position is reached. At that time, the
expected effect of A ’s ger-missile-lar operator
will be achieved, and hence it will be terminated.
A, can then apply the final-missile-maneuver
operator from the EMPLOY-WEAPONS problem
space. The final-missile-maneuver operator may
lead to subgoals in other problem spaces, not
shown in the figure.

Thus, by subgoaling from one operator into

86

another a whole operator/problem-space hierarchy
is generated. The state in each of these problem
spaces consists of a global portion shared by all of
the problem spaces and a local portion that is local
to that particular problem space. This organization
supports reactive and flexible behaviors given
appropriate pre-conditions (or conditions) for the
operators, and the appropriate operator selection
and termination mechanisms, as outlined in [13].
In particular, if the global state changes so that the
expected effects of any of the operators in the
operator hierarchy is achieved, then that operator
can be terminated. All of the subgoals generated
due to that operator are automatically deleted. Note
that A, may also terminate an operator even if its
expected effects are not achieved. This may be
achieved if another operator is found to be more
appropriate for the changed situation. For instance,
suppose the opponent suddenly abandons the
combat and tumns to return to it base while A is
attempting to fire a missile at the opponent as
shown above. In this case, the chase-opponent
operator may be more appropriate than the
employ-missile operator in the intercept problem
space. Hence, A, terminates the employ-missile
operator (all its subgoals get eliminated as well),
and instead, A, applies the chase-opponent
operator.

Since all of the above operators are used in
generation of A’s own actions, they will be
henceforth denoted using the subscript own. For
instance, employ-missile,,, ~ will denote the
operator A, uses in employing a missile.
Operator,, .~ will be used to denote a generic
operator that A uses to generate its own actions.
The global state in these problem spaces will be
denoted by state . Problem-spaces that consist
of state, = and operator,, will be referred to as
self-centered problem spaces. The motivation for
using this method for denoting states operators and
problem spaces will become clearer below.

3.2. Tracking Other Agent’s Behaviors

Given the similarities between A and its
opponent, the key idea in our approach to event
tracking is to use A_’s problem space and operator
hierarchy to track opponent’s behaviors. We will
first illustrate this idea in some detail using some
simplifying assumptions. The detailed issues
involved in operationalizing this idea will be
discussed in Section 3.3.

To begin with, let us assume that A and its
opponent are exactly identical in terms of the
knowledge they have of this domain, and all their

other characteristics related to this domain. That is,
A, and its opponent have identical problem spaces
and operators at their disposal to engage in the air-
combat simulation task. This simplifies A 's event
tracking task, since it can essentially use a copy of
its own problem-spaces and operators to track the
opponent’s actions and behaviors. Operators in
these problem spaces represent A ’s model of its
opponent’s operators. These operators are denoted
using the subscript opponent. Thus, the
execute-mission operator used in modeling an
opponent’s exccution of her mission is denoted by
execute-mission Similarly, operator, '
will be used to mote a generic operator used by
the opponent.

The global state in these problem-spaces
represents A,’s model of the state of its opponent,
and is denoted by state ... Generating
state,ooonent requires A, to mo‘sgl features such as
the opponent’s sensor input. Based on information
such as the range of opponent’s sensors, at least a
portion of this state can be generated. However,
other portions of state o oonent MY require fairly
complex computation, essentially mirroring the
computation that A, requires to generate all of the
information .in state,.. For instance, one
important piece of information that is computed in
state,, . is the “angle off" (the angle between the
A.s flight path and opponent’s position).
Mirroring this computation in state . will
mean the computation of this "angle (;)F " from the
opponent’s perspective (the angle between the
opponent’s flight path and A s position). For now,
we make another simplifying assumption — that
A, generates a detailed and accurate state,ononent
— and revisit this issue in Section 3.3.

The problem spaces consisting of state . oonent
and Operatdry . nent discussed above are referred
to as opponent-centered problem spaces. With the
opponent-centered problem spaces, A, can
essentially pretend to be the opponent. A, then
tracks opponent’s behaviors and actions by
pretending to engage in the same behaviors and
actions as the opponent. In particular, A applies
operator,, ponent to state - thus modeling the
opponent’s actual application of her operator to her
actual state. Since A is modeling the opponent’s
action, operator,, ... does not change
state o oonent: Instead, if the opponent takes some
action in the real-world, then that change is
modeled as a change in Stateoooonent If this change
matches the expected effects of operator, . .o

then that effectively corroborates A ;’s modeling of

87

Operatory, i neq- (Note that as with AJ's
operator,,,,. these expectations of operator ., eq,
may also only be represented procedurally. This
procedural representation is sufficient to match the
expectations.) If these expectations are

successfully matched, operator,, ..., 1S then
terminated. As an example, consider
start-turn, a being applied to s_tateop acarr I
the opponent actually starts turning, then the

operator start-turn,, ... is corroborated and
terminated. Of course, low-level operators such as
start-turn,, ot are easy to corroborate in this
manner, since the actions they model are directly
observable. Others, however, may not generate
low-level actions that are directly observable. One
category of such operators are the higher level
operators like employ-missile,ooneny which
consists of a number of low-level actions. This
issue will be discussed below.

This technique of event tracking, whers an agent
models another by pretending to be in that agent’s
position, has been previously used in automated
tutoring systems [1, 19]. These tutoring systems
need the ability to model the actions of the
students being tutored. For this, these systems use
student-centered problem spaces where states and
operators model the students under scrutiny. This
technique of modeling the student is referred to as
model tracing. The approach proposed liere for
event tracking is thus based on this model tracing
work. However, there are some significant
differences. For instance, previous work has
primarily focused on static, single-agent
environments, where the agent being modeled is
the only one causing changes in the
environment [10]. There are some other
differences as well. However, before exploring the
impact of these differences, it is useful to first
understand in detail how A, can perform event
tracking using its opponent-centered problem
spaces. This is explained below using the example
from Figure 1. While this explanation does not
directly describe the operation of an actual
implementation, it is based on an actual
implementation that will be described in Section
3.4. Basically, the description presented here will
be used to motivate some representational
modification leading up to the implementation
described in Section 3.4.

Consider the situation in Figure 1-a. In this case,
A, models the opponent’s operator hierarchy as
shown in Figure 4-a. A, is seen to accurately
model this goal hierarchy, and in particular without
any ambiguity about what actions the opponent is
exactly engaged in. This is again a simplifying

assumption, and we will return to it in Section 3.3.
Figure 4-b shows A_'s own operator hierarchy
corresponding to the situation in Figure 1-a. We
assume that A, dovetails the execution of these
operator hierarchies, communicating important
relevant information from one to the other.

OPERATOR-OWN

OPERATOR-OFP
HIERARCHY RIERARCHY

———

TOP-PS EXECUTE-mission | YOP-PS

EXECUTE-MISSION

1)

INTERCEPT &Eg'oum INTERCEPT EXECUTE
FLY=RACETRACK FLY-RACETRACK
EMPLOY-MISSILE | INTERCEPT EMPLOY-MISSILE | WTERCEPT

GET-MISSILE-LAR FOAL-MBLE-SANVER |
ACHIEVE-ATK-HEAD) FINAL-MSL ACHIEVE-PROXIMITY] GET-MMSSILE-LAR
FUSH-FIRE-SUTTON | MANEUVER QUT-TO-LS

STOP-TURN DESIRED FMAMAIN—MFADING OESIRED
START-TURN MANEUVE STARY-TURN

@ ®

Figure 4: (a) A model of opponent’s operator hierarchy,
and (b) A_’s own operator hierarchy.

Consider the model of the opponent’s operator
hierarchy from Figure 4-a. One of the operators in
this hierarchy is final-missile-maneuvers, ...
which models the opponent’s final missile-
launching behavior. This is a high-level operator,
and its expectations cannot be directly
corroborated by observation. This operator is seen
to generate a subgoal, where the first operator is
achieve-attack-headingoppomm. This would require
a start-turn, = operator to turn to attack-
heading. In Figure 1-a, attack heading is achieved,
and state . oonent encodes that fact. Hence,
SIOP-1UrN oo nent is being modeled as the current
operator, to model the opponent’s stopping her
turn at attack-heading.

Now consider A_’s own operator hierarchy in
Figure 4-b. A is attempting to get into position to
fire its own missile using the achieve-proximity,yq
operator in the GET-MISSILE-LAR problem
space. When the situation changes from Figure 1-a
to Figure 1-b, A selects the cut-to-Is,,, operator
in place of the achieve-proximity,,,. operator in

88

FINAL-MISL-MANVR | EMPLOY-MISSRE | Cor a/SSILE-LAR |enrwv-ussu.£

the GET-MISSILE-LAR problem space. This
operator is intended to increase the lateral
separation between the two aircraft.? The
cut-to-Is,,, operator causes A to turn its own
aircraft as shown in Figure 1-b. As the aircraft
turns to a particular heading, this new heading is
modeled in state,, . Thus the cut-to-Is,,,
operator leads to indirect modification of state,

This change in state___ has to be communicatcd

own
to state ¢ 0 update A’s heading in
state This leads to further modification in
state , indicating that the opponent’s attack

heading is no longer achieved. Based on this
madification, achieve-axtack-headingoppom‘ is re-
activated (or re-applied). This operator again
subgoals into the DESIRED-MANUEVER
problem space where the swart-turn, nt
operator is reapplied. When the opponent starts
turning, this operator is comroborated and
terminated. The next operator in this problem
space is stop- '"'""'gopponem When the opponent
actually stops tummg after reaching attack
heading, as shown in Figure I-c, state o, oonent is
modified to indicate that opponent’s attack-
heading is achieved, and hence
s“’P"“’"i"Soppomz operator is corroborated. The
change in heading in state poneat needs to be
communicated back to state . so that A may
readjust its heading in cut-10-Is,y,,, if required.
Continuing with Figure 1-c, the opponent’s
achievement of attack-heading also corroborates
the achieve-atiack- headmgopponcm operator, which
is now terminated. A new operator from the
FINAL-MISSILE-MANEUVERS problem space
— push-ﬁre-buttonopponcm — is now applied.
This operator predicts a missile firing, but it is
known that that cannot be observed. Hence,
push-fire- bunonopponem is terminated even though
there is no direct observation to support that
termination. However, the resulting missile firing
is marked as noi being highly likely. Nonetheless,
this missile launch, even with its low likelihood, is
communicated to state , so that A may react to
it (for instance if A ’s mission forbids it from
taking any risks at all). At this point, given the
termination of the push-fire-button, opponent
operator, opponent’s

2 ateral separation is defined as the perpendicular distance
between the line of flight of A _'s aircraft and the position of its
opponent. When the two aircraft are pointing right at each other
as in Figure 1-a, there is no latera. separation between the two
aircraft. Increasing lateral separation provides a positional
advantage. '

final-missile-maneuvers ponent Operators 1s
corroborated and terminated. Following that, an
Fpoleoppomm operator in the EMPLOY-MISSILE
problem space predicts an Fpole turn. This again
generates a subgoal, back into the DESIRED-
MANEUVER problem space and the
start-turn, ., . oq Operator is reapplied. When the
opponent executes her Fpole turn in Figure 1-d, the
Fpolcomnm operator is corroborated and
terminated. At this point, all of the expectations
for the high-level employ-missileoppoml operator
are corroborated; and hence state is
modified to indicate that a missile launm highly
likely. These changes in state | op — the change
in the opponent’s heading and the highly hkely
status of the missile launch — are once again
communicated to state . Based on the high
likelihood of the missile launch, A activates the
operator missile-evasion . to evade the incoming
missile (Figure 1-e). This change in A 's heading
is once again communicated back to state, o onent:

Thus, A, executes its own operators, and tracks
opponent’s actions and behaviors using the
OPerator o nen aNd state,oo...y- This can help
A, to trac ns opponent’ s haviors, and address
all of the constraints on event tracking outlined in
Section 2. However, there are some important
issues involved in addressing our earlier
constraints with this approach. There are also
some simplifying assumptions that we made in
illustrating event tracking: (i) A, and its opponent
are identical; (ii) A performs all of the complex
computation that is necessary to accurately model
opponent’s state; and (iii) A, can accurately model
opponent’s operator hierarchy without any
ambiguity. Relaxing these assumptions leads to
some additional issues, which also relate to the
constraints on event tracking. These issues are all
discussed in the next Section.

3.3. Addressing Constraints on Event
Tracking

The first constraint on event tracking was for an
agent to track highly flexible and reactive
behaviors of its opponent, while taking appropriate
agent interactions into account. The use of
opponent-centered problem spaces with
Operator,,onent and State o nonen helps in partly
addressing this constraint (this was the motivation
behind this approach to begin with). In particular,
operator, ... can be activated and terminated in
the same ex1ble manner as operator,,, .. There is
complete uniformity in the treatment of the two

89

types of operators.

However, these opponent-centered problem
spaces by themselves do not address the issue of
modeling the interactions among the different
agents. In particular, the method outlined in
Section 3.2 requires building one operator
hierarchy for A, and one for each opponent, with
their own _ lobal states. This leads to a situation
where multiple compartmentalized operator
hierarchies with their own global states are
generated. Modeling the strong agent interactions
present in this domain requires passing messages
from one compartment to another. For instance, as
described above, when A, changes heading, that
information needs to be propagated from state .
to state oo nent: Similarly, when the opponent fires
a missile that information has to be communicated
to state___ from state Similarly, if A is to

own . ?poncn(_'
take some action depending on whether the
intercept . e ODerator is being executed, then

that information would need to be propagated to
A,’s compartment.

Given the level of interactions among A, and its
opponents, this message passing can be a
substantial overhead. Furthermore, there can be
many aircraft involved in the combat, leading to an
increase in the message passing overheads. This is
particularly problematical given the second
constraint on event tracking (of real-time
performance) and the fourth constraint (which
implies continuous agent interactions).
Additionally, the communication among the
different compartments essentially duplicates the
information of one compartment in another. For
instance, when a missile is fired, this information
is duplicated in different compartments. Such
duplication is problematical in terms of
maintaining its consistency. If a missile is removed
from one compartment, it must be removed from
all of the others.

The solution we are investigating to alleviate the
problem with this compartmentalization is to
merge the different operator hierarchies for the
different agents into a single compartment, which
we will refer to as world-centered problem space
(WCPS for short). WCPS eiiminates the
boundaries between different self-centered and
opponent-centered problem spaces. Instead, the
different operator hierarchies are maintained
within the context of a single WCPS. There is also
a single world state. This state includes A_’s own
problem-solving state (state), A_’s model of the
state of its opponent (state,ynoneny) 35 Well as Aj's
model of the states of other entities, including
other opponents or friendlies in the world.

WCPS eliminates the need for passing messages
to model interactions. Instead, interactions get
modeled in terms of changes to the single global
state. Operator,,,, and Operator o neq ar€
directly able to reference this global state as well
as other operators. Furthermore, the problem of
duplication of information is avoided. For instance,
a missile fired by the opponent gets modeled
within this single global state as a single missile.
Operator hierarchies modeling all of the different
agents can directly react to this missile.

An additional benefit of the single global state in
WCPS also relates to one of the assumptions
mentioned in Section 3.2. In particular, A need
not perform all of the complex computation
required in modeling opponent’s state, but instead
it may "re-use" some of the computation. Consider
the example of the computation of "angle off"
from the opponent’s perspective, as mentioned in
Section 3.2. With the global state in WCPS, A,
does not need to recompute this “angle off".
Instead, this is automatically computed in Aj's

state,, ., and this can simply be reused. In
particular, A ’s state . already maintains the

computation of “target aspect” from its own
perspective (the angle between the opponent’s
flight path and A s position). This is precisely the
definition of “angle off" the ogoonent’s
perspective. Thus, instead of computing the “angle
off* from the opponent’s perspective and “target
aspect” from A ’s perspective separately, a single
computation can be performed and used for both
purposes. Of course, not all of the complex
computation involved in generating the opponent’s
state can be avoided in this manner. The
interesting research question then is determining
what portion can be re-used in this manner, and
how much extra computation is really necessary.
This shift from small self-centered =~ 4
opponent-centered problem-spaces to WCPS
related to the objective framework wuscd In
simulation and analysis of DAI systems [5], which
describes the essential, “real" situation in the
world. However, the focus of our work is on an
individual agent using its world-centered model for
event-tracking. While this model introduces a shift
towards an objective point of view, by definition, it
is an agent’s subjective view of its environment.
and may contain approximations in

0perator,o,anent and state oo onent

INote that if the agents do not interact, then a single WCPS
may not be appropriate, and separate problem spaces may be the
right choice for modeling them.

90

The second constraint on event tracking relates
to A.'s ability to track events in real-time. The
key impact of this decision is on generating an

accurate and unambiguous Operator .o nent

hierarchy — one of the assumptions made in the
previous section. In particular, this constrains the
methods A, can employ in attempting to generate
an accurate and unambiguous operator hierarchy.
For instance, Ward [19] presents one general
method for generating an unambiguous operator
hierarchy. This method involves an exhaustive
search over all possible operator applications until
the one that creates the right expectations, i.e., one
that matches the opponent’s current actions, is
created. If there is more than one such operator
application, then one is chosen randomly. A
wrong choice can be made in such situations.
However, as soon as that is discovered, another
exhaustive search can be performed. Given the
real-time constraint on event tracking, this type of
exhaustive search strategy can not be applied.
While Ward suggests some heuristics to constrain
the search, this remains a difficult problem. The
WCPS approach at least provides a partial answer
here. In particular, given the uniformity among
operator,,,, and operator, e in WCPS, the
mechanism employed in resolving ambiguity in
operator,,, . operators — search control rules —
can also be used in resolving ambiguity in
OPEratoryonanent: Besides search control rules,
another possibility for resolving ambiguity in
WCPS is to generate the goal hierarchy bottom-up
rather than top-down. While both of these are
powerful tools in WCPS, their advantages and
disadvantages in this context are not yet well
understood. "

The real-time constraint also raises the issue of
abstractions in event tracking. In particular, Hill
and Johnson [10] have recently argued that
tracking an individual agent’s actions in detail in a
dynamic environment may prove computationally
intractable. They advocate detailed tracking only
where necessary, and reliance on abstractions
elsewhere. In WCPS, abstractions in modeling an
operator would imply that detailed subgoals for
modeling that operator need not be generated. For
instance, A, may not model the detailed operators
used in accomplishing ger-missile-laryoo nen-
Thus, when ger-missile-lar, . 18 activated, it
may not lead to any subgoais. However, when the
opponent actually reaches the LAR (missile firing
position), get-missile-lar, . €an be considered
as corroborated and terminated. Unfortunately, this
method of abstract modeling may not be
appropriate for corroborating an operator such as

employ-missile,, ponent: which involves multiple
maneuvers. In this case, the intermediate headings
of opponent’s aircraft may be important and just
testing the terminating position may be an
inappropriate test for corroboration. Automatic
generation of the right levels of abstraction is an
interesting issue for future work.

The third constraint on event tracking was the
generation of expectations for an unseen, but on-
going event. In WCPS, the application of an
operator, ent i €ssence is the expectation for
the opponent to execute a certain plan or action.
Thus, this constraint can be addressed in a
straightforward manner. However, since the event
is unseen, there can be no corroboration of it. One
possibility to deal with this situation is to terminate
operator__ . if the relevant action is known to
be unobservable (for instance, since the opponent’s
aircraft is not observable on radar).

The fourth constraint is related to the continuous
nature of event tracking. The main implication of
this constraint is the continuous interaction among
agents, which as discussed above, leads to the
move towards WCPS.

There were also three assumptions made in the
previous section to simplify event tracking. The
second and the third assumption, related to
modeling of the opponent’s state and operator
hierarchy have been discussed above. However,
the first one of the assumptions has not been
discussed. This assumption is that the automated
pilot agent A and its opponent are identical. The
key implication of this assumption is that A can
create a copy of its own operator and problem
space hierarchy to model the opponent. (This
creation of a copy by itself may not be
straightforward if all of A ’s knowledge is
essentially procedural.) This assumption
essentially substitutes for another assumption in
the plan recognition literature: the agent that is
recognizing a plan is assumed to have full
knowledge of all of the plans that the planning
agent can execute [12]. If A has such additional
knowledge about how its opponent’s plans or

- operators, and how those differ differ from its own,
then A need the ability to interleave those with its
own copy of operators while tracking opponent’s
behaviors. If A, does not have this additional
knowledge, then A, will need to model its
opponent with incomplete information, or to learn
that information from observation of the
opponent’s actions or by some other means.

91 -

3.4. A Prototype WCPS-based Agent

An important test of the WCPS model is its
actual application in a dynamic, multi-agent
environment. The task of developing an automated
pilot for the air-combat simulation domain is
tailor-made for this test. The development of
automated pilots in this domain is currently based
on a system called TacAir-Soar [11, 17}, which as
mentioned earlier, is developed using the Soar
integrated problem-solving and leaming
architecture. TacAir-Soar is a "non-trivial" system
that includes about 800 rules.* Its original self-
centered problem space design worked against an
initial inactive opponent. However, it very quickly
failed against an active opponent — there was a
need for tracking events related to actions of the
other agents.

To survive in this real-time environment, the
system was forced to employ world-centered
problem spaces. However, these world-centered
problem-spaces are created based on an incomplete
and ad-hoc mechanism, that suffers from three
problems. First, event tracking is not robust,
meaning the automated pilot agent can and does
generate unuseful or misleading interpretations for
key opponent actions, such as the opponent’s turn
in Figure I-c. This lack of robustness also implies
that the automated pilot is unable to deal with
sensor limitations effectively. Thus, sometimes if
radar contact is momentarily lost, the agent may
not track the opponent’s actions. A second
problem with the existing world-centered problem
spaces is that event tracking does not generate
expectations. A third problem is that the agent’s
real-time response can suffer due to sequential
operator execution.

We have implemented a variant of TacAir-Soar
that is fully based on WCPS. To create this
variant, we started with the operators and problem
spaces that are used by a TacAir-Soar-based
automated pilot in generating its flexible actions
and behaviors. We then generated a copy of these
operators and problem spaces to model the
automated pilot’s opponent within a single WCPS.
This copy was hand generated (since most of
TacAir-Soar’s knowiedge is procedural, automatic
generation of such a copy is an interesting research
question that is left for future work). In generating
this copy, some of TacAir-Soar’s operators and
problem spaces were abstracted away — these
opponent actions were not modeled in detail. The

“Since the completion of the experiment described in this
section, the size of the TacAir-Soar system has grown to about

1500 rules.

92

result is an implementation that is able to track
events while generating expectations. It is also
promising in terms of being more robust in
tracking events. The implementation tracks
opponent’s action and behavior as described
provided in Section 3.2. Simultaneously, as
discussed in Section 3.3, it avoids the
communication overheads and duplication of
information. The implementation currently only
works in single opponent situation. Work on
extending the implementation to multiple opponent
situations is currently in progress.

4. Summary

This paper makes two contributions. First, it
presents a detailed analysis of event tracking in the
“real-world", dynamic, multi-agent environment of
air-combat simulation. This analysis reveals
interesting issues that represent a novel
intersection of the areas of plan recognition and
DAI. Tools and techniques that have emerged from
single-agent environments are inadequate to
address these issues. The second contribution of
the paper is the idea of *. yld-centered problem
spaces (WCPS), for use in general multi-agent
situations. WCPS is independent of problem
spaces as such — the key idea is that an agent
treats the generation of its own behavior and
tracking of others uniformly. WCPS was used in
(re)implementing automated pilots for air-combat
simulation.

The paper also outlined several unresolved
issues in WCPS. Among them, resolving
ambiguity in opponent’s actions, generating
approximations, learning about the opponent from
observation, and so on. We hope that addressing
these issues will help in allowing WCPS to
perform event tracking in a more robust fashion.

References

1. Anderson, J. R., Boyle, C. F., Corbett, A. T,
and Lewis, M. W. "Cognitive modeling and
intelligent tutoring”. Artificial Intelligence 42
(1990), 7-49.

2. Azarewicz, J., Fala, G., Fink, R., and
Heithecker, C. Plan recognition for airborne
tactical decision making. National Conference on
Artificial Intelligence, 1986, pp. 805-811.

3. Carberry, S. Incorporating default inferences
into Plan Recognition. Proceedings of National
Conference on Artificial Inteliigence, 1990, pp.
471-478.

]

4. Carberry, S. Plan Recognition in Natural
Language Dialogue. MIT Press, Cambridge, MA,
1990.

5. Decker, K., and Lesser, V. Quantitative
modeling of complex computational task
environments. Proceedings of the National
Conference on Artificial Intelligenence, 1993.

6. Dousson, C., Gaborit, P., and Ghallab, M.
Situation Recognition: Representation and
Algorithms. International Joint Conference on
Antificial Intelligence, 1993, pp. 166-172.

7. Durfee, E. H., and Lesser, V. R. Using Partial
Global Plans to Coordinate Distributed Problem
Solvers. In Bond, A. H,, and Gasser, L., Ed.,
Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Palo Alto, CA,
1988.

8. Forbus, K. “Qualitative Process Theory".
Artificial Intelligence 24 (1984), 85-168.

9. Grosz, B. J., and Sidner, C. L. Plans for
Discourse. In Intentions in Communication, MIT
Press, Cambridge, MA, 1990, pp. 417-445.

10. Hill, R,, and Johnson, W. L. Impasse-driven
tutoring for reactive skill acquisition. Proceedings
of the Conference on Intelligent Computer-aided
Training and Virtual Environment Technology,
1993.

11. Jones, R. M., Tambe, M, Laird, J. E, and
Rosenbloom, P. Intelligent automated agents for
flight training simulators. Proceedings of the
Third Conference on Computer Generated Forces
and Behavioral Representation, March, 1993.

12. Kautz, A., and Allen J. F. Generalized plan
recognition. National Conference on Artificial
Intelligence, 1986, pp. 32-37. '

i

13. Laird, J.E. and Rosenbloom, P.S. Integrating
execution, planning, and learning in Soar for
external environments. Proceedings of the
National Conference on Artificial Intelligence,
July, 1990.

14. Laird, J. E., Newell, A. and Rosenbloom, P. S.

"Soar: An architecture for general intelligence”.
Artificial Intelligence 33, 1 (1987), 1-64.

15. Rosenbloom, P. S., Laird, J. E., Newell, A.,
and McCarl, R. "A preliminary analysis of the
Soar architecture as a basis for general
intelligence". Ariificial Intelligence 47, 1-3
(1991), 289-325.

16. Song, F. and Cohen, R. Temporal reasoning
during plan recognition. National Conference on
Antificial Intelligence, 1991, pp. 247-252.

17. Tambe, M., Jones, R., Laird, J. E.,
Rosenbloom, P. S., and Schwamb, K. Building
Believable Agents for Simulation Environments.
Proceedings of the AAAI Spring Symposium on
Believable Agents, 1994. (to appear).

18. Van Beek, P., and Cohen, R. Resolving Plan
Ambiguity for Cooperative Response Generation.
Proceedings of International Joint Conference on
Artificial Intelligence, 1993, pp. 938-944.

19. Ward, B. ET-Soar: Toward an ITS for
Theory-Based Representations. Ph.D. Th., School
of Computer Science, Carnegie Mellon University,
May 1991.

Milind Tambe is a computer scientist at the
Information Sciences Institute, University of
Southern California (USC) and a research assistant
professor with the computer science department at
USC. He completed his undergraduate education
in computer science from the Birla Institute of
Technology and Science, Pilani, India in 1986. He
received his-Ph.D. in 1991 from the School of
Computer Science at Carnegie Mellon University,
where he continued as a research associate until
1993. His interests are in the areas of integrated
Al systems, and efficiency and scalability of Al
programs, especially rule-based systems.

Paul S. Rosenbloom is an associate professor of
computer science at the University of Southern
California and the acting deputy director of the
Intelligent Systems Division at the Information
Sciences Institute. He received his B.S. degree in
mathematical sciences from Stanford University in
1976 and his M.S. and Ph.D. degrees in computer
science from Carnegie-Mellon University in 1978
and 1983, respectively. His research centers on
integrated intelligent systems (in particular, Soar),
but also covers other areas such as machine
learning, production systems, planning, and
cognitive modeling. He is a Councillor of the
AAALI and a past Chair of ACM SIGART.

93

A Very Low Cost System for Direct Human Control of Simulated Vehicles

Michael van Lent and Robert Wray
Artificial Intelligence Laboratory
University of Michigan
1101 Beal Avenue
Ann Arbor, MI 28109-2110
vanlent@eecs.umich.edu and vrayre@eecs.umich.edu

Abstract

Testing and knowledge acquisition have been two
of the most tedious and time consuming tasks in
the development of IFOR agents in the TacAir-
Soar (TAS) project. This paper presents some
suggestions for a human control tool, similar to
a simple flight simulator, that can be helpful in
these two areas. Furthermore, we discuss some
of the design considerations and implementation
issues that are faced in developing such a tool.
Such a tool, called the Human Instrument Panel
(HIP) has been developed for use in the TacAir-
Soar project. Some key features of HIP are how
cheaply it has been developed, how quickly is was
incorporated into the TacAir-Soar project, and
how easily it can be adapted to similar domains.

Introduction

The Human Instrument Panel (HIP) is a tool de-
signed to make the testing of TacAir-Soar (TAS)
agents in the ModSAF simulator easier and less
tedious. Additionally it has been useful to a lesser
extent as an aid in the lengthy process of knowl-
edge acquisition. This paper presents suggestions
as to how this type of tool can be used as an aid in
testing and knowledge acquisition and discusses
some of the design considerations that the creator
of such a tool might face. Since the Human In-
strument Panel is meant to be a time-saving tool,
one major design consideration is that the time
and effort saved by HIP outweigh the time and
effort spent on development and maintenance.

The TacAir-Soar project[l] at the University
of Michigan, ISI, and Carnegie Mellon University
has combined Soar, a state of the art artificial
intelligence architecture, and ModSAF, a sophis-
ticated battlefield simulator, to create realistic,
human-like computer agents in a beyond visual
range air-to-air combat domain. The develop-
ment of these agents can be viewed as a repeated
cycle through three phases[2]:

1. Knowledge Acquisition

2. Implementation
3. Testing

94

Usually the majority of the development time in
the TacAir-Soar project is spent in the knowledge
acquisition and testing phases. It is for this rea-
son that HIP has been developed specifically to
assit % .n these two tasks.

The main difficulties in knowledge acquisition
are the vast amount of information that must
be acquired and the formulation of questions to
extract the most important information. One
effective form of knowledge acquisition, which
sidesteps the questions formulation difficulty, is
to observe expert pilots as they fly missions on
simulators. This allows the questioner to identify
issues that might never come up in a question
and answer session. Unfortunately, the cost of
running the simulators and getting the pilots and
researchers to the simulator site does not allow for
the amount of free play that would be required to
cover the breadth of necessary knowledge.

Like knowledge acquisition, one of the difficul-
ties of the testing phase is getting the experts,
researchers, and machines together so that the
experts can evaluate the TacAir-Soar agents. An-
other major difficulty is the lack of a flexible, re-
alistic opponent against which to test the TAS
agents. ModSAF controlled agents are not suffi-
ciently intelligent to provide realistic challenges to
the TAS agents and there is no support in Mod-
SAF for direct human control of agents (i.e. no
flight simulator capability). Until recently, test-
ing a TAS agent in a specific scenario required
creating a separate set of TAS agents as oppo-
nents with hard-coded missions, and then care-
fully designing the initial situation so that the
desired scenario would occur. This was a time
consuming process and testing TAS agents only
against other TAS agents left the possibility of
undetected errors.

One obvious solution to these problems is to

create a tool which acts as a simple flight simula-
tor interface to ModSAF agents. This would pro-
vide the ability to observe free play sessions with-
out expensive simulators (TacAir-Soar has been
tested against BATTs! simulators at the WIS-
SARD lab at the Oceana Naval base). Addition-
ally, the interface could also serve as a realistic
opponent for TAS agents, pointing out errors that
TAS vs. TAS testing might miss. This is exactly
the role that the Human Instrument Panel (HIP)
is designed to fill. HIP allows the user to attach a
simple instrument panel to a ModSAF agent and
issue flight commands to that agent’s plane.

One goal of this paper is to describe the wide
range of possible uses for a human control tool
such as HIP in the ~reation of intelligent forces
(IFORs). Hopefully the ways in which we have
found HIP to be useful will suggest techniques
that will make testing and knowledge acquisition
for other IFORs easier. Some of the design con-
siderations involved in creating human control
tools will be discussed along with the pros and
cons of the choices made while developing HIP.

The next section of this paper will describe the
potential uses for human control tools, such as
HIP, both as testing tools and aids to knowledge
acquisition. Section 3 will point out some of the
important design considerations and discuss the
advantages of various approaches while section 4
provides a quick description of the various forms
of HIP that we have developed (F-14D, MiG-29,
E-2C) including screen snapshots of HIP in ac-
tion.

Functionality of a Human Control
Tool

When we set out to develop the Human Instru-
ment Panel we were motivated by the need for
a flexible and realistic opponent for TAS agents.
As the project progressed we came up with many
more potential uses which required only minor
additions to the original specifications. The func-
tionality of human control tools can be divided
into two categories: testing aids and knowledge
acquisition aids. Since HIP was designed mainly
as a tool for testing we will focus primarily on
its applications to this phase. There are three
major components of IFOR development in the
Tactical Air domain that HIP facilitates: testing
in a variety of situations, monitoring an agent’s
local (instrument-level) behavior during testing,
and scenario setup.

Testing Intelligent Agents HIP enables
three different types of testing that are benefi-

1The Basic Air Tactics Trainer is a medium-
fidelity aircraft simulator.

cial to the IFOR designer. First, one would like
to test the performance of an agent against a hu-
man pilot. Such tests may involve determining
the response of the agent to specific tactical situ-
ation (e.g., bogey approaches TAS from the right,
rear quarter and performs a set series of maneu-
vers). With HIP, the researcher can take con-
trol of a plane and use HIP to approach the TAS
agent from the specified quarter and perform the
required maneuvers. The TAS agent’s responses
to these actions can be recorded for later evalua-
tion. This is an example of scripted testing. The
nature of the HIP interface also encourages free-
play testing. One can simply create a TacAir-Soar
agent, create a HIP agent, and then fly, head-to-
head. While on the surface this may seem more
like play than research, this can lead to the ob-
servation of behaviors not explicitly seen during
scripted testing.

A second type of testing that can be accom-
plished with HIP is an agent’s ability to coordi-
nate its actions with other agents. This is done by
allowing a human and a TacAir-Soar agent to fly
together. Communication from HIP to the agent
is accomplished using a series of pull-down menus
that correspond to the types and formats of ra-
dio messages the TacAir-Soar agents can send to
one another. The advantage of testing this coor-
dination with a human pilot (as opposed to two
IFORs interacting) is that specific tests can be
scripted that would be difficult to carry out with
two IFORs. For example, consider the question
of testing an agent’s behavior when its wingman
is lost. Using an IFOR for this test would require
implementing an agent that would purposely lose
its lead. Similar tests in the BATTs are impos-
sible since there is no communication interface
between that simulator and Soar. However, us-
ing HIP in this test requires only that the pilot
acting as the wingman fly away after establishing
a communication link with the lead.

A third type of testing facilitated by HIP is the
ability to monitor the response of IFOR. agents
in situations with varying world knowledge. For
example, an agent’s behavior toward a single con-
tact should probably be modified if the agent
is informed of multiple, hostile contacts beyond
radar visibility. This ability to control the agent’s
world knowledge is achieved in HIP by introduc-
ing a new plane type, the E-2C2. The HIP E-
2C can direct BRASH (Bearing-Range-Altitude-
Speed-Heading) contact information to TacAir-
Soar agents as well as to other HIP agents (and,
conceivably, to BATTs pilots as well). The HIP
E-2C also is complementing the design of an E-
2C TacAir-Soar agent. Prior to the implementa-

2The E-2C is a prop-driver, non-combat plane
with a large AWACS-style radar.

tion of the HIP E-2C, there was no way to inform
TacAir-Soar agents about contacts out of their
radar range.

Monitoring An Intelligent Agent’s Behav-
ior In ModSAF each unit is displayed as an icon
with associated heading, speed, and altitude val-
ues. This is sufficient for observing a TacAir-
Soar agent’s high level behavior but it does not
provide much information about how realistically
the agent is flying nor any important information
such as radar modes and weapon selection. An-
other possible use of a human control tool is to
“peek over TacAir-Soar’s shoulder” as the TAS
agent flies by displaying that plane’s instrument
readouts while leaving the agent in control. To
support this an option was added to HIP to at-
tach the instrument panel to a plane but sup-
press the transmission of any flight commands
from HIP. This has provided some useful feedback
a8 to how certain flight dynamics are handled in
ModSAF. Additionally expert pilots may find it
easier to evaluate TacAir-Soar agents from the fa-
miliar (somewhat realistic) cockpit perspective.

Building Scenarios The ability to selectively
suppress or allow the transmission of flight com-
mands from HIP could also very useful when set-
ting up scenarios to test an agent’s response to
specific situations. It is often difficuit to set the
initial position of each unit involved in the sce-
nario so that a desired encounter occurs. With
the human control tool it could be possible to
take control of each agent and fly it into exactly
the position required and then return control to
TAS. Once the user has taken control away from
TAS, HIP does not currently allow control to be
returned to TAS. This is due to the difficulty of
keeping the TAS agent’s internal state consistent
with the external world. Once this problem is
overcome, it is possible that TAS could learn be-
haviors by “observing” while a human flies the
agent’s plane and executes the desired actions.

Design Considerations

There are obviously many ways that a human
control tool can be implemented, each with vari-
ous advantages and disadvantages. In this section
we will discuss a few of these implementation de-
cisions as well as some important high-level design
considerations.

High-Level Considerations Although the
anticipated uses of HIP drove its design, several
other high-level factors had to be considered as
well. Four are discussed here: level of detail in the
simulation, non-invasive interface with the simu-
lator, shallow learning curve for new users, and a

96

simple implementation.

In considering the level of cockpit detail for the
HIP interface, one key decision was made which
affected the subsequent development of the tool.
The TacAir-Soar agents use a cockpit abstrac-
tion[1] to interface with ModSAF. The agents
send commands to ModSAF indicating flight pa-
rameters such as desired altitude and speed; Mod-
SAF includes functions to convert these high-level
commands into low-level flight surface, sensor and
weapon controls. Since one of the goals of the
HIP project was to produce a realistic tool as
quickly as possible, the TAS/ModSAF interface
was adopted for HIP as well. This resulted in
a less-realistic interface than many flight simula-
tors — there is no joystick and commands are en-
tered for the desired heading, altitude and speed
while ModSAF determines the appropriate flight
response. This decision does represent a compro-
mise in simulator realism. However, since the do-
main of interest is tactical rather than low-level
flight, this choice allowed much faster develop-
ment while not compromising HIP’s anticipated
uses.

Because HIP was to be used in a simulated en-
vironment with an unknown (and possibly large)
number of other agents, HIP could not adversely
affect the normal operation of ModSAF; the
added functionality had to be non-invasive. Simi-
larly, HIP also had to be transparent to ModSAF
so that ModSAF would work normally if no HIP
agent were needed. The implementation decisions
outlined below allowed HIP to achieve these re-
quirements. Finally, since HIP is usually run from
the same workstation as the simulator, its display
had to minimize interference with the ModSAF
display. This drove the decision to make the HIP
F-14 and MiG-29 windows as small as possible.

Another factor in the design of HIP was that it
needed to be simple to use. Building an interface
that required pilot skill would have defeated many
of the functionalities described above. This de-
sign constraint was met by using a graphical inter-
face built to resemble a highly schematic cockpit.
Flight controls are modified using a mouse with
“click-and-drag” widgets. This allows a novice

-user to receive instruction on HIP and be “up

and flying” in less than five minutes. Addition-
ally, demonstrations and reviews can now include
sessions in which on-lookers can participate in an
engagement — with or against — an IFOR agent.

Finally, the time required to create HIP had
to be considered, taking into account all the de-
sign goals and constraints mentioned heretofore.
HIP is intended as a tool to aid IFOR research
and not an end unto itself. The system had to
be developed quickly, with a minimum impact on

project personnel. Additionally, the completed
system had to support the addition of features
and enhancements without significant effort. The
basic implementation strategy derives from this
constraint.

Human Control Tool/Simulator Interface
One of the first issues faced in the development
of HIP was how it would communicate with Mod-
SAF. One possibility was to make HIP a part of
the ModSAF executable. The advantage of this
approach was that communication could be ac-
complished via parameters to function calls and
would allow for very fast transmission and as high
a bandwidth as necessary. The disadvantages
were that making HIP a part of the ModSAF ap-
plication would make the executable larger and
slower. As mentioned above one of our high level
design goals was to limit any adverse effects HIP
might have on the ModSAF system. Because of
this, HIP was not incorporated into the ModSAF
application.

The approach we chose was to make HIP a sep-
arate executable which communicated with Mod-
SAF through UNIX sockets. A variety of in-
terprocess communication packages would have
been appropriate but sockets were chosen because
working code was available. The main advan-
tage of the separate process approach is that HIP
can be run on a separate machine and therefore
has very little effect on the speed of ModSAF.
Also the addition of the HIP communication in-
terface added only 50 kilobytes to the ModSAF
executable while the entire HIP package would
have added well over a megabyte. The trans-
fer rate through the sockets seems well able to
keep up with ModSAF; however, if this becomes
a problem more efficient interprocess communica-
tion techniques are available.

Moded vs. Unmoded User Interface In ad-
dition to these requirements, the control structure
of the final interface needed to be unmoded. A
moded system is simply one in which certain ac-
tions can be made only when initiated by a pre-
vious series of actions. Conversely, an unmoded
design allows most functionality to be accessed in-
dependent of other actions. This capability was
important for HIP since most actions occur as a
response to the current situation. For example, a
pilot may decide to turn in response to a number
of different situations: firing a missile, evading an
approaching missile, receiving an order from the
lead or taking advantage of the tactical situation.
Thus, it is important that a HIP pilot be able to
turn at any time. Such behavior is supported by
HIP’s unmoded design. Specifically, all controls
in the HIP interface can be accessed at any time.
Controls that require a series of steps (e.g., load-

ing and then firing a weapon) must be ordered by
the HIP pilot. Therefore, pressing the fire button
has no effect when a missile is not loaded. Such
an umoded design is consistent with an actual
cockpit and adds to HIP’s ease-of-use.

Quick and Cheap Development The HIP
interface required a sophistication in computer
graphics that would have required either expen-
sive consultation or time for the designers to
learn such sophistication. However, there are
many software packages available that allow the
design of user interfaces at the “widget” level
rather than the pixel level of most computer
graphics programming. A widget is simply a
pre-defined graphics component with a specific
functionality such as a menu or slide-bar. Ex-
amples of such widget design packages include
X-Designer{3] (Imperial Software Technologies),
Builder Xcessory(4] (Integrated Computer Solu-
tions), and the Simple User Interface Toolkit[5] or
SUIT (University of Virginia). SUIT was chosen
for this project because it was available to the uni-
versity free-of-charge and it included the follow-
ing needed features: a reasonable assortment of
widgets, the ability to design widgets with specific
functionality, and good documentation backed by

~ a large user group.

97

The ability to create user-defined widgets was
particularly important. For example, the first im-
plemeatation of the radar display contained only
textual information and proved difficult to use.
This information was encoded in the subsequent
design of the graphical radar display. The color
of a particular radar contact is used to represent
the classification of an agent as friendly, enemy
or unknown. The shape of the contact deter-
mines if the contact is held via radar, visual or
both. A vector from the contact gives relative
heading and speed information. This display has
proven simple to use, conveying a great deal of
information via this customization of the widget.
Additionally, the capability to select targets by
clicking on them in the radar display was added.
This removed the necessity of identifying agents
by call sign or vehicle-id when targeting. Other
user-defined widgets include the heading display
and the HUD. These widgets increase both the
functionality and usability of the interface but,
because SUIT supports the design of such wid-
gets, does not require programming at the pixel
level for such increased capability.

The first implementation of HIP (for the F-
14) was done by two graduate students, working
part-time over the course of a semester (approx-
imately three effort-months). This included the
full functionality of the agent described in Sec-
tion 4 as well as researching the capabilities and

payloads of the actual aircraft[6,7]. Modifying
HIP for a similar plane (the MiG-29) took about
forty-five minutes of actual coding and about a
day to test after researching the appropriate flight
and weapons parameters. Finally, incorporating a
completely different plane-type, with both added
features and a different functionality (the E-2C),
took only 10 hours of total effort, again after the
appropriate research had been completed. These
efforts showed that our design goals had been
met: a tool had been developed quickly that could
be used in number of ways and that did not inter-
fere with the simulator. Additionally, the design
criteria allowed the interface to be modified very
quickly for application to slightly different agents
in the same domain.

Description of HIP

The F-14 version was the first HIP version con-
structed (see Figure 1). The display is divided
into three sections. The left-most section includes
the communications interface and widgets for se-
lecting and deleting HIP agents (HIP may be used
to control more than one F-14 at a time). Com-
munications is accomplished via a series of win-
dows that represent message templates. For ex-
ample, when the “Current Position” message is
selected, HIP automatically fills in that informa-
tion in the template. Messages not correspond-
ing to the template messages can also be entered.
In the center of the display are the flight con-
trols as well as buttons for releasing control of an
agent from ModSAF (toggling the transmission
of commands to ModSAF) and quitting ModSAF.
There is also a simple Heads Up Display (HUD) in
the center of the window. The flight controls for
heading, altitude and speed include both the cur-
rent value (given by the large, filled arrows) and
the desired value (the small arrow in the heading
display, the position of the sliders for altitude and
speed). Finally, the right-most section of the HIP
window consists of the radar display, radar con-
trols, and weapons controls. As mentioned pre-
viously, targeting simply consists of clicking on
contacts in the radar display.

Figure 2 is an example of the HIP E-2C dis-
play. The reduced-function flight controls have
been placed to the right and the radar display
enlarged and moved to the center. Weapons con-
trols have been deleted and a new window created
for displaying the BRASH of the current contact-
of-interest (COI). This information is generated
automatically when BRASH information is “ra-
dioed” to a TacAir-Soar agent. BRASH informa-
tion can be generated with respect to either the
position of the E-2C or another agent. The HIP
E-2C, with both a different display and different
functionality from the HIP F-14 agent, was cre-

98

ated by utilizing the basic, generic structure that
was purposely used in building the F-14 agent.

Flying in HIP simply requires entering the
name of an appropriate agent from ModSAF in
the Select Plane text box, setting the desired
starting configuration, and then hitting the Take
Control button. Once control has been estab-
lished the user can then hit the button again to
Release Conirol. As mentioned previously, the
user’s activity while flying is unmoded and any
action can be taken immediately in response to
the user’s evaluation of the current scenario.

Although the flight controls are rudimentary,
experimentation with HIP has shown that sophis-
ticated maneuvers can be accomplished. How-
ever, in addition to these maneuvers, inexperi-
enced pilots also often make mistakes. One of the
most obvious is turn too hard, too often, resulting
in stalls. Stalls may be recovered by diving hard
until speed increases sufficiently for re-engaging
the engines. What is interesting about these ma-
neuvers is that by just using HIP and getting a
“feel” for flying, TAS designers have become more
comfortable with the problem domain and have
gained insights into many of its features and limi-
tations. This has proved an unanticipated benefit
of HIP but one that is proving useful, especially
as the agents are modeled at increasing levels of
detail.

Conclusion

While the examples in this paper have concen-
trated on the air to air combat domain, human
control tools can be easily transferred to other
domains where a similar interaction is desired
between human and computer generated forces.
The near-immediate extensions to HIP for the
MiG-29 and E-2C demonstrate the extensibility
of the basic tool. In the future we hope to ex-
tend HIP by creating versions for close air sup-
port units, ground forces and other vehicles sup-
ported by ModSAF by utilizing the underlying
ModSAF functions for low-level agent behavior.
Thus, having invested in the implementation of
the basic tool, application to different domains is
considerably simplified.

This paper has discussed some of the decisions
appropriate for developing a simple interface for
human interaction with intelligent forces. These
decisions were constrained by the following ques-
tions:

o What functions should be supported by the
tool?

o How much effort can be invested in tool devel-
opment?

o What tools are available to make development

Figure 1: The HIP F-14 Instrument Panel.

Figure 2: The E-2C Radar Controller Window and Flight Controls.

ﬁi

quick, inexpensive and robust?

In attempting to explore the trade-offs and ex-
plain the rationale behind our answers we hope we
have provided a motivation and framework for the
development of similar tools. We have presented
the Human Instrument Panel as one example of
such a tool and described a wide variety of ways
in which such a human control tool can aid in the
testing and knowledge acquisition necessary for
any IFOR project.

Acknowledgements

This research was supported under contract to
the University of Michigan, as part of contract
N00014-92-K-2015 from the Advanced Systems
Technology Office (ASTO) of the Advanced Re-
search Projects Agency (ARPA) and the Naval
Research Laboratory (NRL). Critical support has
been provided by John Laird, Paul Rosenbloom,
Randy Jones, Frank Koss, Karl Schwamb and the
SUIT Users Group.

References

[1] Rosenbloom, P., Johnson, L., Jones, R.,
Koss, F., Laird, J., Lehman, J., Rubinoff, R.,
Schwamb, K., Tambe, M. Intelligent automated
agents for tactical air simulation: a progress re-
pori. Manuscript submitted for publication.

[2] Jones, R., Tambe, T., Laird, J., Rosenbloom,
P. Intelligent automated agents for flight train-
ing simulators. In Proceedings of the Third
Conference on Computer Generated Forces and
Behavioral Representation. Univ. of Central
FL, IST-TR-93-07, 1993.

[3] Conway, M., Pausch, R., Passarella, K. The
SUIT Version 2.3 Reference Manual. Univer-
sity of Virginia, 1992.

[4) X-designer user’s manual, release 3. Imperial

Software Technology, 1993.

[5) Builder Xcessory user’s manual. Integrated
Computer Solutions, Incorporated. @ Cam-
bridge, MA, 1992.

[6] Brinkman, D., ed. Jane’s Avionics, 12th Edi-
tion. Jane’s Information Group, Inc. 1993.

[7] Stevenson, J. Grumman F-1{ Tomcal.
McGraw-Hill Books, Blue Ridge Summit, PA.
1975.

Biographies

Michael van Lent is currently a doctoral student
in the Artificial Intelligence Laboratory at the
University of Michigan. He received his B.A. with
honors in computer science from Williams College

in 1991 and a Master of Science in Computer Sci-
ence from the University of Tennessee, Knoxville
in 1993. Mr. van Lent also worked for the Naval
Center for Applied Research in Artificial Intelli-
gence during the summers of 1992 and 1993.

Robert Wray is currently a doctoral student at
the University of Michigan. Mr. Wray received a
Bachelor of Science in Electrical Engineering from
Memphis State University in 1988 and a Master
of Science in Electrical Engineering from the Uni-
versity of Massachusetts, Dartmouth in 1993. He
also worked for the Naval Undersea Warfare Cen-
ter from 1989 to 1993, focusing primarily on the
automatic generation of presets for submarine-
launched weapons.

100

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

v

Carnegre Meilon University does not chscrimmate ara Carmcgie Me on Urversty s reaured ot 1o
discriminate i admission. empltoyment or agruristrabon of 28 programs on e Bass of race solor
national ongin. sex or handicap n vioialon of Tie VI of the Civa Righis Act of 1964, Tie iX of the
Educational Amendments of 1972 and Secton 504 of the Rehatitation Act of 1973 or other fodora
state or local laws or execuiive orders s

In agdiwon, Carregie Melion Unversity does not discritnate i agmission amipiaymien: or admee s
tration of its programs on the basis of relgion. creed ancesty. Beled age. veleTan siatus Le i
orientation or in violation of federal state o I0Cal WS ar oxeutve orders

Inquines concerning apphcatior of tnese statements stouid be directed 1o e Provos Carmneoee
Metton University 5000 Forties Averue Prrishurgt PA 15213 tolennione (4123 26800684 0 [
Presigent for Enroiiment Carregie Melion Unive 5000 Fores Avanue Piranurgn DA 15213
telephone (412) 263-2056

